
www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Regular Expressions

Leverage the power of regular expressions to create
an engaging user experience

Loiane Groner

Gabriel Manricks

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Regular Expressions

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Production reference: 1250515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-225-8

www.packtpub.com

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

Credits

Authors
Loiane Groner

Gabriel Manricks

Reviewers
Andrea Barisone

Florian Bruniaux

Robert K Casto

Julio Freitas

Juri Strumpflohner

Commissioning Editor
Kunal Parikh

Acquisition Editor
Subho Gupta

Content Development Editor
Rohit Kumar Singh

Technical Editors
Bhupesh Kothari

Mrunmayee Patil

Copy Editor
Sonia Michelle Cheema

Project Coordinator
Mary Alex

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Sheetal Aute

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors

Loiane Groner has over 9 years of software development experience. In her
university, she demonstrated a great deal of interest in IT. She worked as a teacher's
assistant for 2.5 years for algorithms, data structures, and computing theory. She
represented her university at the ACM International Collegiate Programming Contest
– Brazilian Finals (South America Regionals), and she also worked as the student
delegate of the SBC (Brazilian Computing Society) for 2 years. Loiane won a merit
award in her senior year for being one of the top three students in her course. She had
one of the highest GPAs in the computer science department, and also graduated with
honors.

She has already worked at multinational companies, such as IBM. Her areas of
expertise include Java SE and Java EE and also Sencha technologies (such as Ext
JS and Sencha Touch). Nowadays, Loiane is working as a software development
manager at a financial institution where she manages overseas solutions. She also
works as an independent Sencha consultant and coach.

Loiane is also the author of Ext JS 4 First Look, Mastering Ext JS (first and second
editions), Sencha Architect App Development, and Learning JavaScript Data Structure
and Algorithms, all published by Packt Publishing.

She is passionate about Sencha and Java, and she is the CampinasJUG (Campinas
Java Users Group) leader and an ESJUG (Espirito Santo Java Users Group)
coordinator, both of which are Brazilian JUGs.

Loiane also contributes to the software development community through her
blogs, which can be found at http://loianegroner.com (the English version) and
http://loiane.com (the Portuguese-BR version), where she writes about IT careers,
Ext JS, Sencha Touch, PhoneGap, Spring Framework, Java, and general development
notes and also publishes screencasts.

www.it-ebooks.info

http://loianegroner.com
http://loiane.com
http://www.it-ebooks.info/

If you want to keep in touch with her, you can find her on Facebook (https://www.
facebook.com/loianegroner) and on Twitter (@loiane).

I would like to thank my parents for educating, guiding, and
advising me through all these years and for helping me become a
better human being and professional. A very special thank you to
my husband for being patient and supportive and for giving me
encouragement throughout.

I would like to thank Packt Publishing for this amazing opportunity
to write books about the topics I really love! I'd like to thank all
the people involved in the process of creating, reviewing, and
publishing these books!

I would also like to thank the readers of this book and the other
books I have written for their support and feedback. Your feedback
is very valuable in helping me improve as an author and a
professional. Thank you very much!

Gabriel Manricks is a full-stack software and web developer, and a writer.
He is the CTO at CoinSimple and a staff writer at Nettuts+, where he enjoys
learning as well as teaching others. He also freelances in the fields of web
consulting, development, and writing.

www.it-ebooks.info

https://www.facebook.com/loianegroner
https://www.facebook.com/loianegroner
http://www.it-ebooks.info/

About the Reviewers

Andrea Barisone works for a leading Italian IT company and has over 14 years of
experience in information technology, working on corporate projects as a developer
using different technologies.

He also has strong experience in ECM systems, and he has several J2EE certifications.
He has a great ability in acquiring knowledge of new technologies and exploiting
this knowledge by working with different environments and technologies.

Andrea has reviewed the following books:

•	 Agile Web Development with Rails 4, Pragmatic Bookshelf
•	 BPEL and Java Cookbook, Packt Publishing
•	 Learning Three.js: The JavaScript 3D Library for WebGL, Packt Publishing
•	 WebGL HotShots, Packt Publishing
•	 Automate with Grunt: The Build Tool for JavaScript, Pragmatic Bookshelf
•	 Andrea has also reviewed the video Building Applications with Ext JS,

Packt Publishing

I would like to thank my parents, Renzo and Maria Carla; my
beloved wife, Barbara; and my two wonderful little children,
Gabriele and Aurora, for making my life as wonderful as they do.

www.it-ebooks.info

http://www.it-ebooks.info/

Florian Bruniaux is a web development project manager at E-motors, France.
He is passionate about new technologies, particularly about process optimization,
database conception, and software development.

He has worked for various companies, such as Aylan, a French start-up; Oxylane;
and EDF, where he worked on IT projects. This included working on server
monitoring systems, cross-browser applications, multidevice app conceptions,
and software development.

Robert K Casto was born and raised in Columbus, Ohio, where he graduated from
the Ohio State University with a computer science degree in 1995. He has worked
for companies, such as Concentus, Nationwide Financial Services, Amazon.com,
Cornerstone Brands, PCMS, OXXO, Walgreens, Best Buy, and TuneWiki. He now
lives in Cincinnati, Ohio, where he started SellersToolbox in 2011 to help companies
sell their products on Amazon.com. He has spoken at SCOE (Sellers Conference
for Online Entrepreneurs), and he volunteers for the Strange Loop conference in
St Louis and the Boy Scouts with his son. He has reviewed a number of books and
enjoys learning about software technologies, especially those that help automate or
simplify processes.

I would like to express my gratitude to my family for their patience
and understanding of my work and busy schedule. I also want to
thank the people I work with at SellersToolbox, who have become
indispensible to its success, and the many companies I have had the
privilege to work with and assist. It is very gratifying to be able to
help others and become a part of their pursuits.

www.it-ebooks.info

http://www.it-ebooks.info/

Julio Freitas graduated in computer science, specializing in information systems
and technology; he's been a developer of web applications since 2000. He worked as
a developer and Unix systems administrator in projects related to grid computing
using Java and PHP. He's also worked at the Center for Weather Forecasting and
the Climate Studies/National Institute for Space Research (CPTEC/INPE), Brazil,
for 5 years. He currently resides in England, where he started off working at a web
systems company. Now, he's involved in creating his own start-up and is acting as a
full-stack web developer in projects focused on API development and security and
building applications for mobile devices using the MEAN stack and Ionic.

Juri Strumpflohner is a passionate developer who loves to code, follow the
latest trends on web development, and share his findings with others. He has been
working as a coding architect for an e-government company, where he is responsible
for coaching developers, innovating, and making sure that software requirements
meet the desired quality standards.

When he's not coding, Juri is either training or teaching Yoseikan Budo, a martial
art form, where he currently owns a 2nd DAN black belt. Follow him on Twitter,
where his handle is @juristr, or visit his blog at http://juristr.com to catch
up with him.

www.it-ebooks.info

http://juristr.com
http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.it-ebooks.info

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[i]

Table of Contents
Preface	 v
Chapter 1: Getting Started with Regex	 1

It's all about patterns	 1
Analyzing a phone number	 2
Analyzing a simple log file	 3
Analyzing an XML file	 3

Regex in JavaScript	 4
The RegExp constructor	 5

Using pattern flags	 5
Using the rgx.test method	 6
Using the rgx.exec method	 6
The string object and regular expressions	 7

Using the String.replace method	 7
Using the String.search method	 8
Using the String.match method	 8

Building our environment	 9
Handling a submitted form	 11
Resetting matches and errors	 13
Creating a regular expression	 13
Executing RegExp and extracting its matches	 14
Testing our application	 16

Summary	 17
Chapter 2: The Basics	 19

Defining vague matchers in Regex	 19
Matching a wild card character	 19
Matching digits	 20
Matching alphanumeric chars	 21
Negating alphanumeric chars and digits	 22

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Defining ranges in Regex	 22
Defining a range	 22
Matching the dash character	 23
Defining negated ranges	 23

Defining multipliers in Regex	 24
Matching one or more occurrences	 24
Matching zero or one occurrence	 25
Matching zero or more occurrences	 26

Defining custom quantifiers	 26
Matching n or more occurrences	 27
Matching n to m occurrences	 27

Matching alternated options	 28
Creating a Regex for a telephone number	 29
Summary	 30

Chapter 3: Special Characters	 31
Nonvisual constraints	 31

Matching the beginning and end of an input	 32
Matching word boundaries	 33
Matching nonword boundaries	 33
Matching a whitespace character	 34

Defining nongreedy quantifiers	 34
Matching groups in Regex	 36

Grouping characters together to create a clause	 36
Capture and noncapture groups	 38

Matching lookahead groups	 40
Using a negative lookahead	 41

Summary	 41
Chapter 4: Regex in Practice	 43

Regular expressions and form validation	 43
Setting up the form	 44

Validating fields	 45
Matching a complete name	 46

Understanding the complete name Regex	 47
Matching an e-mail with Regex	 48

Understanding the e-mail Regex	 49
Matching a Twitter name	 50

Understanding the twitter username Regex	 50
Matching passwords	 51
Matching URLs	 52

Understanding the URL Regex	 53

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Manipulating data	 54
Using the String.replace method	 55
Matching a description field	 56

Understanding the description Regex	 58
Explaining a Markdown example	 59

Summary	 60
Chapter 5: Node.js and Regex	 61

Setting up Node.js	 61
Getting started with our application	 62

Reading a file with Node.js	 63
The anatomy of an Apache log file	 64

Creating the Apache log Regex	 66
Creating a Regex for the time part	 67
Creating a Regex for the request information	 68
Creating a Regex for the status code and object size	 69
Creating a Regex for the referrer and the user agent	 69
Parsing each Apache log row	 70

Summary	 76
Appendix: JavaScript Regex Cheat Sheet	 77

Character classes	 77
Literals	 78

Character sets	 79
Boundaries	 79
Grouping, alternation, and back reference	 80
Quantifiers	 81
JavaScript regular expressions methods	 82

Index	 85

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[v]

Preface
Regular expressions are patterns or templates, which allow you to define a set of
rules in a natural yet vague way, giving you the ability to match and validate text.
They have, more or less, been implemented in nearly every modern programming
language.

When working with any type of textual input, you don't always know what the
value will be, but you can usually assume (or even demand) the format you are
going to receive into your application. These types of situations are exactly when you
would create a regular expression to extract and manipulate this input.

In this book, you will learn the basics to get started with a regular expression in
JavaScript. We will start with the basics, passing through some special patterns
and then, dive into two examples. The first one is validating a web form, and the
second one is a very complex pattern to extract information from a log file. For all the
examples, we will use a step-by-step approach, which will make it easier to learn and
assimilate all the knowledge we've gained from this book.

What this book covers
Chapter 1, Getting Started with Regex, presents an introduction about regular
expressions in JavaScript. It also shows how to develop the program that will be
used to test the regular expressions used in the first three chapters.

Chapter 2, The Basics, covers the main features of regular expressions in JavaScript,
which are vague matchers, multipliers, and ranges.

Chapter 3, Special Characters, dives into the special characters patterns of Regex. It
covers defining boundaries for a Regex, defining nongreedy quantifiers, and defining
Regex with groups.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vi]

Chapter 4, Regex in Practice, demonstrates how to develop a web form and validate all
its fields using regular expressions functionalities learned since the first chapter.

Chapter 5, Node.js and Regex, explains step by step how to create a simple application
using Node.JS to read and parse an Apache log file using Regex. It also demonstrates
how to display the information from the log file into a friendly web page to the user.

Appendix, JavaScript Regex Cheat Sheet, presents a summary of the patterns used in
regular expressions in JavaScript along with their descriptions, and a list of useful
methods to test and create regular expressions.

What you need for this book
To develop the source code presented in this book, you will need any text editor of
your preference and a browser (such as Chrome or Firefox).

For Chapter 5, Node.js and Regex, you will also need to install Node.js in your
computer. All the required steps are described in the chapter itself.

Who this book is for
This book is ideal for JavaScript developers who work with any type of user entry
data. The book is designed for JavaScript programmers who possess basic to
intermediate skills in JavaScript regular expressions, and want to learn about these
for the first time or sharpen their skills to become experts.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Now, let's take a look at some of these helper functions, starting with err and
clearResultsAndErrors."

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[vii]

A block of code is set as follows:

123-123-1234
(123)-123-1234
1231231234

Any command-line input or output is written as follows:

npm install http-server –g

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The
following image exemplifies the match of the regular expression when given a
Text input."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.it-ebooks.info

www.packtpub.com/authors
http://www.it-ebooks.info/

Preface

[viii]

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/1234OT_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/1234OT_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Preface

[ix]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[1]

Getting Started with Regex
Regular expressions are special kinds of tools used to represent patterns
syntactically. When working with any type of textual input, you don't always know
what the value will be, but you can usually assume (or even demand) the format you
are going to receive into your application. These types of situations arise when you
create a regular expression to extract and manipulate this input.

Consequently, to match a specific pattern requires a very mechanical syntax, since a
change in even a single character or two can vastly change the behavior of a regular
expression and, as a result, the final outcome as well.

Regular expressions by themselves (or Regex, for short) are not specific to any single
programming language and you can definitely use them in nearly all the modern
languages straight out of the box. However, different languages have implemented
Regex with different feature sets and options; in this book, we will be taking a look at
Regex through JavaScript, and its specific implementation and functions.

It's all about patterns
Regular expressions are strings that describe a pattern using a specialized syntax
of characters, and throughout this book, we will be learning about these different
characters and codes that are used to match and manipulate different pieces of
data in a vague sort of manner. Now, before we can attempt to create a regular
expression, we need to be able to spot and describe these patterns (in English). Let's
take a look at a few different and common examples and later on in the book, when
we have a stronger grasp on the syntax, we will see how to represent these patterns
in code.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Regex

[2]

Analyzing a phone number
Let's begin with something simple, and take a look at a single phone number:

123-123-1234

We can describe this pattern as being three digits, a dash, then another three
numbers, followed by a second dash, and finally four more numbers. It is pretty
simple to do; we look at a string and describe how it is made up, and the preceding
description will work perfectly if all your numbers follow the given pattern. Now,
let's say, we add the following three phone numbers to this set:

123-123-1234
(123)-123-1234
1231231234

These are all valid phone numbers, and in your application, you probably want to be
able to match all of them, giving the user the flexibility to write in whichever manner
they feel most comfortable. So, let's have another go at our pattern. Now, I would say
we have three numbers, optionally inside brackets, then an optional dash, another
three numbers, followed by another optional dash, and finally four more digits. In
this example, the only parts that are mandatory are the ten digits: the placing of
dashes and brackets would completely be up to the user.

Notice also that we haven't put any constraints on the actual digits, and as a matter
of fact, we don't even know what they will be, but we do know that they have to be
numbers (as opposed to letters, for instance), so we've only placed this constraint:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[3]

Analyzing a simple log file
Sometimes, we might have a more specific constraint than just a digit or a letter; in
other cases, we may want a specific word or at least a word from a specific group. In
these cases (and mostly with all patterns), the more specific you can be, the better.
Let's take the following example:

[info] – App Started
[warning] – Job Queue Full
[info] – Client Connected
[error] – Error Parsing Input
[info] – Application Exited Successfully

This is an example of some sort of log, of course, and we can simply say that each
line is a single log message. However, this doesn't help us if we want to manipulate
or extract the data more specifically. Another option would be to say that we have
some kind of word in brackets, which refers to the log level, and then a message after
the dash, which will consist of any number of words. Again, this isn't too specific,
and our application may only know how to handle the three preceding log levels, so,
you may want to ignore everything else or raise an error.

To best describe the preceding pattern, we would say that you have a word, which
can either be info, a warning, or an error inside a pair of square brackets, followed
by a dash and then some sort of sentence, which makes up the log message. This will
allow us to capture the information from the log more accurately and make sure our
system is ready to handle the data before we send it:

Analyzing an XML file
The last example I want to discuss is when your pattern relies on itself; a perfect
example of this is with something like XML. In XML you may have the following
markup:

<title>Demo</title>
<size>45MB</size>
<date>24 Dec, 2013</date>

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Regex

[4]

We could just say that the pattern consists of a tag, some text, and a closing tag. This
isn't really specific enough for it to be a valid XML, since the closing tag has to match
the opening one. So, if we define the pattern again, we would say that it contains
some text wrapped by an opening tag on the left-hand side and a matching closing
tag on the right-hand side:

The last three examples were just used to get us into the Regex train of thought; these
are just a few of the common types of patterns and constraints, which you can use in
your own applications.

Now that we know what kind of patterns we can create, let's take a moment to
discuss what we can do with them; this includes the actual features and functions
JavaScript provides to allow us to use these patterns once they're made.

Regex in JavaScript
In JavaScript, regular expressions are implemented as their own type of object (such
as the RegExp object). These objects store patterns and options and can then be used
to test and manipulate strings.

To start playing with regular expressions, the easiest thing to do is to enable a
JavaScript console and play around with the values. The easiest way to get a console
is to open up a browser, such as Chrome, and then open the JavaScript console on
any page (press the command + option + J on a Mac or Ctrl + Shift + J).

Let's start by creating a simple regular expression; we haven't yet gotten into the
specifics of the different special characters involved, so for now, we will just create
a regular expression that matches a word. For example, we will create a regular
expression that matches hello.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[5]

The RegExp constructor
Regular expressions can be created in two different ways in JavaScript, similar
to the ones used in strings. There is a more explicit definition, where you call the
constructor function and pass it the pattern of your choice (and optionally any
settings as well), and then, there is the literal definition, which is a shorthand for
the same process. Here is an example of both (you can type this straight into the
JavaScript console):

var rgx1 = new RegExp("hello");
var rgx2 = /hello/;

Both these variables are essentially the same, it's pretty much a personal preference as
to which you would use. The only real difference is that with the constructor method
you use a string to create an expression: therefore, you have to make sure to escape any
special characters beforehand, so it gets through to the regular expression.

Besides a pattern, both forms of Regex constructors accept a second parameter,
which is a string of flags. Flags are like settings or properties, which are applied
on the entire expression and can therefore change the behavior of both the pattern
and its methods.

Using pattern flags
The first flag I would like to cover is the ignore case or i flag. Standard patterns
are case sensitive, but if you have a pattern that can be in either case, this is a good
option to set, allowing you to specify only one case and have the modifier adjust this
for you, keeping the pattern short and flexible.

The next flag is the multiline or m flag, and this makes JavaScript treat each line in
the string as essentially the start of a new string. So, for example, you could say that
a string must start with the letter a. Usually, JavaScript would test to see if the entire
string starts with the letter a, but with the m flag, it will test this constraint against
each line individually, so any of the lines can pass this test by starting with a.

The last flag is the global or g flag. Without this flag, the RegExp object only checks
whether there is a match in the string, returning on the first one that's found;
however, in some situations, you don't just want to know if the string matches, you
may want to know about all the matches specifically. This is where the global flag
comes in, and when it's used, it will modify the behavior of the different RegExp
methods to allow you to get to all the matches, as opposed to only the first.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Regex

[6]

So, continuing from the preceding example, if we wanted to create the same pattern,
but this time, with the case set as insensitive and using global flags, we would write
something similar to this:

var rgx1 = new RegExp("hello", "gi");
var rgx2 = /hello/gi;

Using the rgx.test method
Now that we have created our regular expression objects, let's use its simplest
function, the test function. The test method only returns true or false, based
on whether a string matches a pattern or not. Here is an example of it in action:

> var rgx = /hello/;
undefined
> rgx.test("hello");
true
> rgx.test("world");
false
> rgx.test("hello world");
true

As you can see, the first string matches and returns true, and the second string does
not contain hello, so it returns false, and finally the last string matches the pattern.
In the pattern, we did not specify that the string had to only contain hello, so it
matches the last string and returns true.

Using the rgx.exec method
The next method on the RegExp object, is the exec function, which, instead of
just checking whether the pattern matches the text or not, exec also returns
some information about the match. For this example, let's create another regular
expression, and get index for the start of the pattern;

> var rgx = /world/;
undefined
> rgx.exec("world !!");
['world']
> rgx.exec("hello world");
['world']
> rgx.exec("hello");
null

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[7]

As you can see here, the result from the function contains the actual match as the first
element (rgx.exec("world !!")[0];) and if you console.dir the results, you will
see it also contains two properties: index and input, which store the starting index
property and complete the input text, respectively. If there are no matches, the
function will return null:

The string object and regular expressions
Besides these two methods on the RegExp object itself, there are a few methods on
the string object that accept the RegExp object as a parameter.

Using the String.replace method
The most commonly used method is the replace method. As an example, let's say
we have the foo foo string and we want to change it to qux qux. Using replace
with a string would only switch the first occurrence, as shown here:

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Regex

[8]

In order to replace all the occurrences, we need to supply a RegExp object that has
the g flag, as shown here:

Using the String.search method
Next, if you just want to find the (zero-based) index of the first match in a string,
you can use the search method:

> str = "hello world";
"hello world"
> str.search(/world/);
6

Using the String.match method
The last method I want to talk about right now is the match function. This function
returns the same output as the exec function we saw earlier when there was no g
flag (it includes the index and input properties), but returned a regular Array of
all the matches when the g flag was set. Here is an example of this:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

We have taken a quick pass through the most common uses of regular expressions in
JavaScript (code-wise), so we are now ready to build our RegExp testing page, which
will help us explore the actual syntax of Regex without combining it with JavaScript
code.

Building our environment
In order to test our Regex patterns, we will build an HTML form, which will process
the supplied pattern and match it against a string.

I am going to keep all the code in a single file, so let's start with the head of the
HTML document:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Regex Tester</title>
 <link rel="stylesheet"
 href="http://netdna.bootstrapcdn.com/bootstrap/3.0.3/
 css/bootstrap.min.css">
 <script src="http://cdnjs.cloudflare.com/ajax/libs/jquery/
 2.0.3/jquery.min.js"></script>
 <style>
 body{
 margin-top: 30px;
 }
 .label {
 margin: 0px 3px;
 }
 </style>
 </head>

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files
e-mailed directly to you.

It is a fairly standard document head, and contains a title and some styles. Besides
this, I am including the bootstrap CSS framework for design, and the jQuery library
to help with the DOM manipulation.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Getting Started with Regex

[10]

Next, let's create the form and result area in the body:

<body>
 <div class="container">
 <div class="row">
 <div class="col-sm-12">
 <div class="alert alert-danger hide" id="alert-box"></div>
 <div class="form-group">
 <label for="input-text">Text</label>
 <input
 type="text"
 class="form-control"
 id="input-text"
 placeholder="Text"
 >
 </div>
 <label for="inputRegex">Regex</label>
 <div class="input-group">
 <input
 type="text"
 class="form-control"
 id="input-regex"
 placeholder="Regex"
 >

 <button
 class="btn btn-default"
 id="test-button"
 type="button">
 Test!
 </button>

 </div>
 </div>
 </div>
 <div class="row">
 <h3>Results</h3>
 <div class="col-sm-12">
 <div class="well well-lg" id="results-box"></div>
 </div>
 </div>
 </div>
 <script>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

 //JS code goes here
 </script>
 </body>
</html>

Most of this code is boilerplate HTML required by the Bootstrap library for styling;
however, the gist of it is that we have two inputs: one for some text and the other
for the pattern to match against it. We have a button to submit the form (the Test!
button) and an extra div to display the results.

Opening this page in your browser should show you something similar to this:

Handling a submitted form
The last thing we need to do is handle the form being submitted and run a regular
expression. I broke the code into helper functions to help with the code flow when
we go through it now. To begin with, let's write the full-click handler for the submit
(Test!) button (this should go where I've inserted the comment in the script tags):

var textbox = $("#input-text");
var regexbox = $("#input-regex");
var alertbox = $("#alert-box");
var resultsbox = $("#results-box");

$("#test-button").click(function(){
 //clear page from previous run
 clearResultsAndErrors()

 //get current values
 var text = textbox.val();
 var regex = regexbox.val();

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Regex

[12]

 //handle empty values
 if (text == "") {
 err("Please enter some text to test.");
 } else if (regex == "") {
 err("Please enter a regular expression.");
 } else {
 regex = createRegex(regex);

 if (!regex) {
 return;
 }

 //get matches
 var results = getMatches(regex, text);

 if (results.length > 0 && results[0] !== null) {
 var html = getMatchesCountString(results);
 html += getResultsString(results, text);
 resultsbox.html(html);
 } else {
 resultsbox.text("There were no matches.");
 }
 }
});

The first four lines select the corresponding DOM element from the page using
jQuery, and store them for use throughout the application. This is a best practice
when the DOM is static, instead of selecting the element each time you use it.

The rest of the code is the click handler for the submit (Test!) button. In the function
that handles the Test! button, we start by clearing the results and errors from the
previous run. Next, we pull in the values from the two text boxes and handle the
cases where they are empty using a function called err, which we will take a look
at in a moment. If the two values are fine, we attempt to create a new RegExp object
and we get their results using two other functions I wrote called createRegex and
getMatches, respectively. Finally, the last conditional block checks whether there
were results and displays either a No Matches Found message or an element on
the page that will show individual matches using getMatchesCountString to
display how many matches were found and getResultsString to display the
actual matches in string.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Resetting matches and errors
Now, let's take a look at some of these helper functions, starting with err and
clearResultsAndErrors:

function clearResultsAndErrors() {
 resultsbox.text("");
 alertbox.addClass("hide").text("");
}

function err(str) {
 alertbox.removeClass("hide").text(str);
}

The first function clears the text from the results element and then hides the previous
errors, and the second function un-hides the alert element and adds the error passed
in as a parameter.

Creating a regular expression
The next function I want to take a look at is in charge of creating the actual RegExp
object from the value given in the textbox:

function createRegex(regex) {
 try {
 if (regex.charAt(0) == "/") {
 regex = regex.split("/");
 regex.shift();

 var flags = regex.pop();
 regex = regex.join("/");

 regex = new RegExp(regex, flags);
 } else {
 regex = new RegExp(regex, "g");
 }
 return regex;
 } catch (e) {
 err("The Regular Expression is invalid.");
 return false;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Regex

[14]

If you try and create a RegExp object with flags that don't exist or invalid parameters,
it will throw an exception. Therefore, we need to wrap the RegExp creation in a try/
catch block, so that we can catch the error and display an error for it.

Inside the try section, we will handle two different kinds of RegExp input, the first
is when you use forward slashes in your expressions. In this situation, we split this
expression by forward slashes, remove the first element, which will be an empty
string (the text before it is the first forward slash), and then pop off the last element
which is supposed to be in the form of flags.

We then recombine the remaining parts back into a string and pass it in along
with the flags into the RegExp constructor. The other case we are dealing with is
where you wrote a string, and then we are simply going to pass this pattern to the
constructor with only the g flag, so as to get multiple results.

Executing RegExp and extracting its matches
The next function we have is for actually cycling through the regex object and
getting results from different matches:

function getMatches(regex, text) {
 var results = [];
 var result;

 if (regex.global) {
 while((result = regex.exec(text)) !== null) {
 results.push(result);
 }
 } else {
 results.push(regex.exec(text));
 }

 return results;
}

We have already seen the exec command earlier and how it returns a results
object for each match, but the exec method actually works differently, depending
on whether the global flag (g) is set or not. If it is not set, it will constantly just return
the first match, no matter how many times you call it, but if it is set, the function will
cycle through the results until the last match returns null. In the function, the global
flag is set, I use a while loop to cycle through results and push each one into the
results array, whereas if it is not set, I simply call function once and push only if
the first match on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Next, we have a function that will create a string that displays how many matches
we have (either one or more):

function getMatchesCountString(results) {
 if (results.length === 1) {
 return "<p>There was one match.</p>";
 } else {
 return "<p>There are " + results.length + " matches.</p>";
 }
}

Finally, we have function, which will cycle through the results array and create
an HTML string to display on the page:

function getResultsString(results, text) {
 for (var i = results.length - 1; i >= 0; i--) {
 var result = results[i];
 var match = result.toString();
 var prefix = text.substr(0, result.index);
 var suffix = text.substr(result.index + match.length);
 text = prefix
 + ''
 + match
 + ''
 + suffix;
 }
 return "<h4>" + text + "</h4>";
}

Inside function, we cycle through a list of matches and for each one, we cut the
string and wrap the actual match inside a label for styling purposes. We need to
cycle through the list in reverse order as we are changing the actual text by adding
labels and also so as to change the indexes. In order to keep in sync with the indexes
from the results array, we modify text from the end, keeping text that occurs
before it, the same.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Regex

[16]

Testing our application
If everything goes as planned, we should now be able to test the application. For
example, let's say we enter the Hello World string as the text and add the l pattern
(which if you remember will be similar to entering /l/g into our application), you
should get something similar to this:

Whereas, if we specify the same pattern, though without the global flag, we would
only get the first match:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

Of course, if you leave out a field or specify an invalid pattern, our error handling
will kick in and provide an appropriate message:

With this all working as expected, we are now ready to start learning Regex by itself,
without having to worry about the JavaScript code alongside it.

Summary
In this chapter, we took a look at what a pattern actually is, and at the kind of data
we are able to represent. Regular expressions are simply strings that express these
patterns, and combined with functions provided by JavaScript, we are able to match
and manipulate user data.

We also covered building a quick RegExp builder that allowed us to get a first-hand
look at how to use regular expressions in a real-world setting. In the next chapter, we
will continue to use this testing tool to start exploring the RegExp syntax.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[19]

The Basics
In the previous chapter, we have already seen that in order to match a substring,
you simply need to write the string inside a regular expression. For example,
to match hello, you would create this variable:

var pattern = /hello/;

We also learned that if we want to match all occurrences of the string or character
of the regular expression, we can use the g flag within Regex. However, situations
where you have as clear a pattern like these are rare, and even when
they come up, it's arguable whether Regex is even required. You really see the
true power of regular expressions when you have less concrete information.

There are two main features the Regex engine implements that allow you to
correctly represent 80 percent of your patterns. We will cover these two main
features in this chapter:

•	 Vague matchers
•	 Multipliers

Defining vague matchers in Regex
In this topic, we will cover character classes that tell the Regex to match a single
vague character. Among the vague matches, there can be a character, digit, or an
alphanumeric character.

Matching a wild card character
Let's say we wanted to find a sequence where we have 1, and then any other
character followed by 3, so that it would include 123, 1b3, 1 3, 133, and so on.
For these types of situations, we need to use a vague matcher in our patterns.

www.it-ebooks.info

http://www.it-ebooks.info/

The Basics

[20]

In the preceding example, we want to be able to use the broadest matcher possible;
we can choose to put no constraints on it if we wish to and it can include any
character. For these kind of situations, we have the . matcher.

A period in Regex will match any character except a new line, so it can include letters,
numbers, symbols, and so on. To test this out, let's implement the aforementioned
example in our HTML utility. In the text field, let's enter a few combinations to test
the pattern against 123 1b3 1 3 133 321, and then for the pattern, we can specify
/1.3/g. Running it should give you something similar to this:

Matching digits
The wildcard character is not the only character to match vague patterns, nor is it
always the right choice. For example, continuing from the previous example, let's
say that the character in between 1 and 3 is a number. In this case, we might not
care which digit ends up there, all we have to make sure of is that it's a number.

To accomplish this, we can use a \d. vague matcher The d backslash or digit special
character will match any character between 0 to 9. Replacing the period with the
backslash d character will give us the following results:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

Matching alphanumeric chars
Only two out of the four matches mentioned earlier comply with the new constraint.
The last main vague matcher is \w, which is a word character. It will match the
underscore character, numbers, or any of the 26 letters of the alphabet (in both
lowercase as well as uppercase letters). Running this in our app will give us the
following results:

www.it-ebooks.info

http://www.it-ebooks.info/

The Basics

[22]

Negating alphanumeric chars and digits
Also, if you want the negated versions of the last two matchers, you can just use their
uppercase counterparts. What I mean by this is that \d will match any number, but
\D will match anything except a number, since they are compliments and the same
goes for \w and \W.

Defining ranges in Regex
Ranges in Regex allow you to create your own custom constraints, much like the
ones we just went through. In a range, you can specify exactly the characters that
can be used or if it's faster, you can specify the inverse, that is, the characters that
do not match.

For the sake of illustration, let's say we wanted to match only abc. In this case, we
could create a range similar to [abc] and it will match a single character, which is
either a, b, or c. Let's test it out with the bicycle text and the /[abc]/g pattern:

Defining a range
Now, this will work, however, if you have a lot of characters you need to match,
your range will become long quickly. Luckily, Regex allows you to use the (-) dash
character to specify a set of characters without needing to list them out. For example,
let's say we want to check whether a three lettered name is formatted correctly,
and we want the first letter to be a capital letter, followed by two lower case letters.
Instead of specifying all 26 letters in each range, we can abbreviate it to [a-z] or [A-
Z] for the uppercase letters. So, to implement a three letter name verifier, we could
create a pattern similar to/[A-Z][a-z][a-z]/g:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

Matching the dash character
If you are trying to match the dash character itself, and you don't want JavaScript
to interpret it as specifying a set, you can either start/end the range with the dash
character or escape it with a backslash. For example to match both "hello world"
and "hello-world," we could write a pattern similar to /hello[-]world/ or /
hello[\-]world/.

We can also use a wild character as a simple dot inside a rage. For example, this
may occur when we want to match a number character and we don't mind having a
period (forgetting for a second that a number can only have one period). So, to match
123 as well as 2.4 and .45, we could specify the /[\d.][\d.]\d/ pattern, and then
both the first and second digits can be periods. Notice, JavaScript doesn't think that
we are referring to the wildcard period inside the range, as this would defeat the
purpose of a range, so JavaScript treats it as a standard period.

Defining negated ranges
The last thing to be covered in ranges is the negated range. A negated range is exactly
what it sounds like. Instead of specifying what to match, we are specifying what not to
match. It's very similar to adding a not (!) character to a Boolean value in JavaScript,
in that it simply flips the return value of what you would have got earlier.

To create a negated range, you can start the range with a (^) caret character to match
any character; however, for the first five letters of the alphabet, you would use
something similar to /[^a-e]/.

This may not seem that useful by itself, but you might, for example, want to strip out
all not alphabetical characters for a filename. In this case, you can type /[^a-z]/gi
and combined with JavaScript's replace function, you can remove all of them.

www.it-ebooks.info

http://www.it-ebooks.info/

The Basics

[24]

Defining multipliers in Regex
Matchers are great but they only "scale" your pattern in one direction. I like to think
of matchers as things that scale your pattern vertically, allowing you to match many
more strings that fit into the same pattern, but they are still constrained in length,
or scale the pattern horizontally. Multipliers allow you to match arbitrarily sized
strings that you may receive as input, giving you a much greater range of freedom.

There are three basic multipliers in Regex:

•	 +: This matches one or more occurrences
•	 ?: This matches zero or one occurrence
•	 *: This matches zero or more occurrences

We will cover these three multipliers in this section, and also show you how to create
a custom multiplier.

Matching one or more occurrences
The most basic multiplier would have to be the (+) plus operator. It tells JavaScript
that the pattern used in the regular expression must appear one or more times. For
example, we can build upon the formatted name pattern we used before, and instead
of just matching a three letter name, we could match any length of name using /
[A-Z][a-z]+/g:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[25]

This pattern represents anything that starts with a capital letter and has at least one
lowercase letter after it. The plus sign will continue to repeat the pattern until it no
longer matches (which in our case occurs when it reaches a space character).

Matching zero or one occurrence
The next multiplier, which I guess can be called more of a quantifier, is the (?)
question mark. Fittingly, this multiplier allows the preceding character to either
show up or not, almost as if we are saying that its presence is questionable. I think
the best way to explain this is by looking at an example. Let's say we want to receive
Apple in either its singular or plural form, for this, we could use this pattern:

/apples?/gi

Now this may seem like the question mark is more of a conditional operator than
a multiplier, but what it is really doing is saying that the preceding character can
appear either once or zero times.

www.it-ebooks.info

http://www.it-ebooks.info/

The Basics

[26]

Matching zero or more occurrences
The next multiplier in our tool chain is the (*) asterisk. This asterisk is a combination
of the previous two multipliers, allowing the previous character to appear anywhere
between zero and infinity times. So, if you have an input that contains a word or
a character many times, the pattern will match. If you have an input that does not
contain a word or a character, the pattern will still match. For example, this can
come in handy if you are parsing some kind of log for update. In situations like this,
you might get update or may update!!! and, depending on the time of day, you
may even get update!!!!!!!!!!!!!!!!. To match all these strings, you can simply
create the pattern /update!*/g pattern.

These are the three standard multipliers, similar to the ones that had built-in sets of
characters for the (\d) ranges. Similarly, Regex allows you to specify and create your
own multipliers.

Defining custom quantifiers
There is only one syntax to specify your own multipliers but because of the different
parameter options available, you get three different functional options.

If you want to match a given character a concrete number of times, you can simply
specify the number of allowed repetitions inside curly braces. This doesn't make
your patterns more flexible, but it will make them shorter to read. For example, if
we were implementing a phone number we could type /\d\d\d-\d\d\d\d/. This
is, however, a bit long and instead, we can just use custom multipliers and type
/\d{3}-\d{4}/, which really shorten it up making it more readable.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[27]

Matching n or more occurrences
Next, if you just want to set a minimum number of times that the pattern can appear,
but don't really care about the actual length, you can just add a comma after the
number. For example, let's say we want to create a pattern to make sure a user's
password is at least six characters long; in such a situation, you may not want to
enforce a maximum character limit, and can, therefore, type something similar to
/.{6,}/:

Matching n to m occurrences
The third variation on our custom multipliers is when you want to set a complete set
of options, matching both, the minimum and maximum number of occurrences. You
can do this by simply adding another number after the comma. For example, if we
had some sort of comment system and we wanted to constrain the comments to be
anywhere between 15 to 140 characters, we could create a Regex string to match this
setup, for example, /.{15,140}/.

Now, I am not saying that the two previously mentioned examples are the best uses
for this kind of Regex, because obviously, there is a much easier way to check text
lengths. However, in the context of a larger pattern, this can be pretty useful.

www.it-ebooks.info

http://www.it-ebooks.info/

The Basics

[28]

Matching alternated options
At this stage, we know how to match any set of characters using vague matchers,
and we have the ability to repeat the patterns for any kind of sequence using
multipliers, which gives you a pretty good base for matching just about anything.
However, even with all this in place, there is one situation that has a tendency
to come up and can be an issue. It occurs when dealing with two different and
completely separate acceptable forms of input.

Let's say we are parsing some kind of form data, and for each question, we want
to extract either a yes or no to be stored somewhere. With our current level of
expertise, we can create a pattern similar to /[yn][eo]s?/g, which would match
both yes and no. The real problem with this is that it will also match all the other six
configurations of these letters, which our app probably won't know how to handle:

Luckily, Regex has a completely different system in place to hand situations like
this and it is in the form of the (|) pipe character. It is similar to the OR operator
you would use in an if statement, except instead of two, you just use one here.
How it works is, you separate the different patterns you want to match by a pipe,
and then any of the patterns can return a match. Changing our previous Regex
pattern with /yes|no/g will then show the correct results:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[29]

Well, at least it almost will, though it will still match no in nos. However, this is
because we have been using open patterns and not really enforcing complete words
(this is a topic in the next chapter).

The pipe character, though, is not limited to just two options, we can easily match a
large array of values by splitting each of them by the pipe character. Also, we are not
constrained to just using plain text, and each segment in our Regex split can be its
own pattern using ranges and multipliers.

Creating a Regex for a telephone number
To tie up this chapter, let's put together a few of these features we just learned about
and construct the phone number pattern we used in the previous chapter. To sum it
up, we want to be able to match all the following number patterns:

123-123-1234
(123)-123-1234
1231231234

www.it-ebooks.info

http://www.it-ebooks.info/

The Basics

[30]

So, first off, we can see that there are optional brackets around the first three
numbers (the area code), and we also have optional dashes between the numbers.
This is a situation where the question mark character comes in handy. For the
numbers themselves, we can use a built-in matcher to specify that they have to
be numbers and a strong multiplier to specify exactly how many we need. The
only special thing we need to know here is that the parenthesis contains special
characters, so we will need to escape them (add a backslash):

/\(?\d{3}\)?-?\d{3}-?\d{4}/g

Parentheses are used to define groups in regular expressions, this is
why they are special characters. We will learn about defining groups
in Chapter 3, Special Characters.

Testing this regular expression with the test application that we developed in
Chapter 1, Getting Started with Regex, and with the examples mentioned at the beginning
of this topic will show that the regular expression matches all of the examples:

Summary
In this chapter, we learned how to use character classes to define a wild character
match, a digit match, and an alphanumeric match. We also learned how to define
quantifiers, which specify how many times a character or group can be present in
an input.

In the next chapter, we will learn about boundaries (positions that can be used to
match the Regex) and defining groups.

www.it-ebooks.info

http://www.it-ebooks.info/

[31]

Special Characters
In this chapter, we will be taking a look at some special characters and some more
advanced techniques that will help us create more detailed Regex patterns. We will
also slowly transition from using our Regex testing environment, and go back to
using standard JavaScript to build more complete real-world examples.

Before we get ahead of ourselves, there are still a couple things we can learn using
our current setup, starting with some constraints.

In this chapter ,we will cover the following topics:

•	 Defining boundaries for a Regex
•	 Defining nongreedy quantifiers
•	 Defining Regex with groups

Nonvisual constraints
Until now, all the constraints we have been putting on our patterns had to do with
characters that could or couldn't be displayed, but Regex provides a number of
positional constraints, which allow you to filter out some false positives.

www.it-ebooks.info

http://www.it-ebooks.info/

Special Characters

[32]

Matching the beginning and end of an input
The first such set is the start and end of string matchers. Using the (^) caret character
to match the start of a string and the ($) dollar sign to match the end, we can force a
pattern to be positioned in these locations, for example, you can add the dollar sign
at the end of a word to make sure that it is the last thing in the provided string. In the
next example, I used the /^word|word$/g pattern to match an occurrence of word,
which either starts or ends a string. The following image exemplifies the match of
the regular expression when given a Text input:

Using both the start and end character together assure that your pattern is the only
thing in the string. For example if you have a /world/ pattern, it will match both
the world string as well as any other string which merely contains world in it, such
as hello world. However, if you wanted to make sure that the string only contains
world, you can modify the pattern to be /^world$/. This means that Regex will
attempt to find the pattern which, both, begins the string and ends it. This, of course,
will only happen if it is the only thing in the string.

This is the default behavior but it is worth mentioning that this isn't always the case.
In the previous chapter, we saw the m or multiline flag, and what this flag does is that
it makes the caret character match not only the beginning of the string but also the
beginning of any line. The same goes for the dollar sign: it will match the end of each
line instead of the end of the entire string. So, it really comes down to what you need
in a given situation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[33]

Matching word boundaries
Word boundaries are very similar to the string boundaries we just saw, except that
they work in the context of a single word. For example, we want to match can, but
this refers to can alone, and not can from candy. We saw in the previous example,
if you just type a pattern, such as /can/g, you will get matches for can even if it's a
part of another word, for example, in a situation where the user typed candy. Using a
backslash (\b) character, we can denote a word boundary (either in the beginning or
at the end), so that we can fix this problem using a pattern similar to /\bcan\b/g, as
shown here:

Matching nonword boundaries
Paired with the \b character, we have the \B symbol, which is its inverse. Similar
to what we have seen on multiple occasions, a capital symbol usually refers to
the opposite functionality, and is no exception. The uppercase version will put a
constraint on the pattern that limits it from being at the edge of word. Now, we'll run
the same example text, except with /can\B/g, which will swap the matches; this is
because the n in can is at its boundary:

www.it-ebooks.info

http://www.it-ebooks.info/

Special Characters

[34]

Matching a whitespace character
You can match a whitespace character using the backslash s character, and it
matches things such as spaces and tabs. It is similar to a word boundary, but it does
have some distinctions. First of all, a word boundary matches the end of a word
even if it is the last word in a pattern, unlike the whitespace character, which would
require an extra space. So, /foo\b/ would match foo. However, /foo\s/ would
not, because there is no following space character at the end of the string. Another
difference is that a boundary matcher will count something similar to a period or
dash as an actual boundary, though the whitespace character will only match a string
if there is a whitespace:

It's worth mentioning that the whitespace character has an \S inverse
matcher, which will match anything but a whitespace character.

Defining nongreedy quantifiers
In the previous section, we had a look at multipliers, where you can specify that a
pattern should be repeated a certain number of times. By default, JavaScript will
try and match the largest number of characters possible, which means that it will be
a greedy match. Let's say we have a pattern similar to /\d{1,4}/ that will match
any text and has between one and four numbers. By default, if we use 124582948, it
will return 1245, as it will take the maximum number of options (greedy approach).
However, if we want, we can add the (?) question mark operator to tell JavaScript
not to use greedy matching and instead return the minimum number of characters as
possible:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[35]

Greedy matching is something that makes it difficult to find bugs in your code.
Consider the following example text:

<div class="container" id="main">
 Site content
<div>

If we wanted to extract the class, you might think of writing a pattern in this way:

/class=".*"/

The problem here is that the * character will attempt to match as many characters
as possible, so instead of getting container like we wanted, we would get
"container" id="main". Since the dot character will match anything, the regular
expression will match from the first quotation mark before the class word to the
closing quotation mark right before the id word. To fix this, we can use the ungreedy
question mark and change the pattern to /class=".*?"/. This will cause it to stop at
the minimum required match, which is when we reach the first quotation mark:

www.it-ebooks.info

http://www.it-ebooks.info/

Special Characters

[36]

Matching groups in Regex
The last main topic that I have left out until now is groups. However, in order to
work with groups, we have to move back into a JavaScript console, as this will
provide the actual results object that we will need to look at.

Groups show how we can extract data from the input provided. Without groups, you
can check whether there is a match, or if a given input text follows a specific pattern.
However, you can't take advantage of vague definitions to extract relevant content.
The syntax is fairly simple: you wrap the pattern you want inside brackets, and then
this part of the expression will be extracted in its own property.

Grouping characters together to create a
clause
Let's start with something basic—a person's name—in standard JavaScript. If you
had a string with someone's name, you would probably split it by the space character
and check whether there are two or three components in it. In case there are two, the
first would consist of the first name and the second would consist of the last name;
however, if there are three components, then the second component would include
the middle name and the third would include the last name.

Instead of imposing a condition like this, we can create a simple pattern as shown:

/(\S+) (\S*) ?\b(\S+)/

The first group contains a mandatory non-space word. The plus sign will again
multiply the pattern indefinitely. Next, we want a space with a second word; this
time, I've used the asterisk to denote that it could be of length zero, and after this,
we have another space, though, this time, it's optional.

If there is no middle name, there won't be a second space, followed by a
word boundary. This is because the space is optional, but we still want
to make sure that a new word is present, followed by the final word.

Now, open up a JavaScript console (in Chrome) and create a variable for this pattern:

var pattern = /(\S+) (\S*) ?\b(\S+)/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[37]

Then, try running the exec command on this pattern with different names, with and
without a middle name, and take a look at this resulting output:

Whether the string has a middle name or not, it will have the three patterns that we
can assign to variables, therefore, we can use something else instead of this:

var res = name.split(" ");
first_name = res[0];

if (res.length == 2) {
 middle_name = "";
 last_name = res[1];
} else {
 middle_name = res[1];
 last_name = res[2];
}

We can remove the conditional statements (if-else) from the preceding code and
write the code something similar to this:

var res = /(\S+) (\S*) ?\b(\S+)/.exec(name);

first_name = res[1];
middle_name = res[2];
last_name = res[3];

If the middle name is left out, our expression will still have the group, it will just be
an empty string.

Another thing worth mentioning is that the indexes of the groups start at 1, so the
first group is in the result 1 index, and the result 0 index holds the entire match.

www.it-ebooks.info

http://www.it-ebooks.info/

Special Characters

[38]

Capture and noncapture groups
In the first chapter, we saw an example where we wanted to parse some kind of XML
tokens, and we said that we needed an extra constraint where the closing tag had to
match the opening tag for it to be valid. So, for example, this should be parsed:

<duration>5 Minutes</duration>

Here, this should not be parsed:

<duration>5 Minutes</title>

Since the closing tag doesn't match the opening tag, the way to reference previous
groups in your pattern is by using a backslash character, followed by the group's
index number. As an example, let's write a small script that will accept a line
delimited series of XML tags, and then convert it into a JavaScript object.

To start with, let's create an input string:

var xml = [
 "<title>File.js</title>",
 "<size>36 KB</size>",
 "<language>JavaScript</language>",
 "<modified>5 Minutes</name>"
].join("\n");

Here, we have four properties, but the last property does not have a valid closing
tag, so it should not be picked up. Next, we will cycle through this pattern and set
the properties of a data object:

var data = {};

xml.split("\n").forEach(function(line){
 match = /<(\w+)>([^<]*)<\/\1>/.exec(line);
 if (match) {
 var tag = match[1];
 data[tag] = match[2];
 }
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[39]

If we output data in a console, you will see that we do, in fact, get three valid
properties:

However, let's take a moment to examine the pattern; we look for some opening
tags with a name inside them, and we then pick up all the characters, except for an
opening triangle brace using a negated range. After this, we look for a closing tag
using a (\1) back reference to make sure it matches. You may have also realized that
we needed to escape the forward slash, so it wouldn't think we were closing the
Regexp pattern.

A back reference, when added to the end of a regular expression
pattern, allows you to back reference a sub-pattern within a pattern,
so that the value of the sub-pattern is remembered and used as
part of the matching. For example, /(no)\1/ matches nono in
nono. \1 and is replaced with the value of the first sub-pattern
within a pattern, or with (no), so as to form the final pattern.

All the groups we have seen so far have been capture groups, and they tell Regexp
to extract this portion of the pattern into its own variable. However, there are other
groups or uses for brackets that can be made to achieve even more functionality, the
first of these is a non capture group.

Matching non capture groups
A non capture group groups a part of a pattern but it does not actually extract this
data into the results array, or use it in back referencing. One benefit of this is that it
allows you to use character modifiers on full sections in your pattern. For example,
if we want to get a pattern that repeats world indefinitely, we can write it as this:

/(?:world)*/

This will match world as well as worldworldworld and so on. The syntax for a
noncapture group is similar to a standard group, except that you start it with a
question mark and a (?:) colon. Grouping it allows us to consider the entire thing as
a single object, and use modifiers, which usually only work on individual characters.

www.it-ebooks.info

http://www.it-ebooks.info/

Special Characters

[40]

The other most common use for noncapture groups (which can be done in capture
groups as well) works in conjunction with a pipe character. A pipe character allows
you to insert multiple options one after the other inside your pattern, for example, in
a situation where we want to match either yes or no, we can create this pattern:

/yes|no/

Most of the time, though, this set of options will only be a small piece of your
pattern. For example, if we are parsing log messages, we may want to extract the log
level and the message. The log level can be one of only a few options (such as debug,
info, error, and so on), but the message will always be there. Now, you can write a
pattern instead of this one:

/[info] - .*|[debug] - .*|[error] - .*/

We can extract the common part into its own noncapture group:

/[(?:info|debug|error)] - .*/

By doing this we remove a lot of the duplicate code.

Matching lookahead groups
The last sets of groups you can have in your code are lookahead groups. These
groups allow us to set a constraint on a pattern, but not really include this constraint
in an actual match. With noncapture groups, JavaScript will not create a special
index for a section, although, it will include it in the full results (the result's first
element). With lookahead groups, we want to be able to make sure there is or isn't
some text after our match, but we don't want this text in the results.

For example, let's say we have some input text and we want to parse out all .com
domain names. We might not necessarily want .com in the match, just the actual
domain name. In this case, we can create this pattern:

/\w+(?=\.com)/g

The group with the ?= character will mean that we want it to have this text at the
end of our pattern, but we don't actually want to include it; we also have to escape
the period since it is a special character. Now, we can use this pattern to extract
the domains:

text.match(/\w+(?=\.com)/g)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[41]

We can assume that we have a variable text similar to this:

Using a negative lookahead
Finally, if we wanted to use a negative lookahead, as in a lookahead group that
makes sure that the included text does not follow a pattern, we can simply use an
exclamation point instead of an equal to sign:

var text = "Mr. Smith & Mrs. Doe";

text.match(/\w+(?!\.)\b/g);

This will match all the words that do not end in a period, that is, it will pull out
the names from this text:

Summary
In this chapter, we learned how to work with greedy and nongreedy matches.
We also learned how to use groups to create more complex regular expressions.
While learning how to group a Regex, we also learned about capturing groups,
non-capturing groups, and lookahead groups.

In the next chapter, we will implement everything we've learned so far in this
book and create a real-world example to match and validate information inputted
by a user.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[43]

Regex in Practice
In the previous two chapters, we covered Regex's syntax in depth, and at this point,
have all the pieces required to build a real-world project, which will be the goal of
this chapter.

Knowing Regex's syntax allows you to model text patterns, but sometimes coming
up with a good reliable pattern can be more difficult, so taking a look at some actual
use cases can really help you learn some common design patterns.

So, in this chapter, we will develop a form, and we will explore the following topics:

•	 Validating a name
•	 Validating e-mails
•	 Validating a Twitter username
•	 Validating passwords
•	 Validating URLs
•	 Manipulating text

Regular expressions and form validation
By far, one of the most common uses for regular expressions on the frontend is for
use with user submitted forms, so this is what we will be building. The form we will
be building will have all the common fields, such as name, e-mail, website, and so
on, but we will also experiment with some text processing besides all the validations.

www.it-ebooks.info

http://www.it-ebooks.info/

Regex in Practice

[44]

In real-world applications, you usually are not going to implement the parsing and
validation code manually. You can create a regular expression and rely on some
JavaScript libraries, such as:

•	 jQuery validation: Refer to http://jqueryvalidation.org/
•	 Parsely.js: Refer to http://parsleyjs.org/

Even the most popular frameworks support the usage of regular
expressions with its native validation engine, such as AngularJS
(refer to http://www.ng-newsletter.com/posts/
validations.html).

Setting up the form
This demo will be for a site that allows users to create an online bio, and as such,
consists of different types of fields. However, before we get into this (since we won't
be building a backend to handle the form), we are going to setup some HTML and
JavaScript code to catch the form submission and extract/validate the data entered
in it.

To keep the code neat, we will create an array with all the validation functions,
and a data object where all the final data will be kept.

Here is a basic outline of the HTML code for which we begin by adding fields:

<!DOCTYPE HTML>
<html>
 <head>
 <title>Personal Bio Demo</title>
 </head>
 <body>
 <form id="main_form">
 <input type="submit" value="Process" />
 </form>

 <script>
 // js goes here
 </script>
 </body>
</html>

www.it-ebooks.info

http://jqueryvalidation.org/
http://parsleyjs.org/
http://www.ng-newsletter.com/posts/validations.html
http://www.ng-newsletter.com/posts/validations.html
http://www.it-ebooks.info/

Chapter 4

[45]

Next, we need to write some JavaScript to catch the form and run through the list
of functions that we will be writing. If a function returns false, it means that the
verification did not pass and we will stop processing the form. In the event where we
get through the entire list of functions and no problems arise, we will log out of the
console and data object, which contain all the fields we extracted:

<script>
 var fns = [];
 var data = {};

 var form = document.getElementById("main_form");

 form.onsubmit = function(e) {
 e.preventDefault();

 data = {};

 for (var i = 0; i < fns.length; i++) {
 if (fns[i]() == false) {
 return;
 }
 }

 console.log("Verified Data: ", data);
 }
</script>

The JavaScript starts by creating the two variables I mentioned previously, we
then pull the form's object from the DOM and set the submit handler. The submit
handler begins by preventing a page from actually submitting, (as we don't have
any backend code in this example) and then we go through the list of functions
running them one by one.

Validating fields
In this section, we will explore how to validate different types of fields manually,
such as name, e-mail, website URL, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Regex in Practice

[46]

Matching a complete name
To get our feet wet, let's begin with a simple name field. It's something we have
gone through briefly in the past, so it should give you an idea of how our system
will work. The following code goes inside the script tags, but only after everything
we have written so far:

function process_name() {
 var field = document.getElementById("name_field");
 var name = field.value;

 var name_pattern = /^(\S+) (\S*) ?\b(\S+)$/;

 if (name_pattern.test(name) === false) {
 alert("Name field is invalid");
 return false;
 }

 var res = name_pattern.exec(name);
 data.first_name = res[1];
 data.last_name = res[3];

 if (res[2].length > 0) {
 data.middle_name = res[2];
 }

 return true;
}

fns.push(process_name);

We get the name field in a similar way to how we got the form, then, we extract the
value and test it against a pattern to match a full name. If the name doesn't match
the pattern, we simply alert the user and return false to let the form handler know
that the validations have failed. If the name field is in the correct format, we set the
corresponding fields on the data object (remember, the middle name is optional
here). The last line just adds this function to the array of functions, so it will be called
when the form is submitted.

The last thing required to get this working is to add HTML for this form field, so
inside the form tags (right before the submit button), you can add this text input:

Name: <input type="text" id="name_field" />

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[47]

Opening this page in your browser, you should be able to test it out by entering
different values into the Name box. If you enter a valid name, you should get the
data object printed out with the correct parameters, otherwise you should be able to
see this alert message:

Understanding the complete name Regex
Let's go back to the regular expression used to match the name entered by a user:

/^(\S+) (\S*) ?\b(\S+)$/

The following is a brief explanation of the Regex:

•	 The ^ character asserts its position at the beginning of a string
•	 The first capturing group (\S+)

°° \S+ matches a non-white space character [^\r\n\t\f]
°° The + quantifier between one and unlimited times

•	 The second capturing group (\S*)
°° \S* matches any non-whitespace character [^\r\n\t\f]
°° The * quantifier between zero and unlimited times

www.it-ebooks.info

http://www.it-ebooks.info/

Regex in Practice

[48]

•	 " ?" matches the whitespace character
°° The ? quantifier between zero and one time
°° \b asserts its position at a (^\w|\w$|\W\w|\w\W) word boundary

•	 The third capturing group (\S+)
°° \S+ matches a non-whitespace character [^\r\n\t\f]
°° The + quantifier between one and unlimited times

•	 $ asserts its position at the end of a string

Matching an e-mail with Regex
The next type of field we may want to add is an e-mail field. E-mails may look pretty
simple at first glance, but there are a large variety of e-mails out there. You may just
think of creating a word@word.word pattern, but the first section can contain many
additional characters besides just letters, the domain can be a subdomain, or the
suffix could have multiple parts (such as .co.uk for the UK).

Our pattern will simply look for a group of characters that are not spaces or
instances where the @ symbol has been used in the first section. We will then want
an @ symbol, followed by another set of characters that have at least one period,
followed by the suffix, which in itself could contain another suffix. So, this can be
accomplished in the following manner:

/[^\s@]+@[^\s@.]+\.[^\s@]+/

The pattern of our example is very simple and will not match every
valid e-mail address. There is an official standard for an e-mail
address's regular expressions called RFC 5322. For more information,
please read http://www.regular-expressions.info/email.
html.

So, let's add the field to our page:

Email: <input type="text" id="email_field" />

We can then add this function to verify it:

function process_email() {
 var field = document.getElementById("email_field");
 var email = field.value;

 var email_pattern = /^[^\s@]+@[^\s@.]+\.[^\s@]+$/;

www.it-ebooks.info

http://www.regular-expressions.info/email.html
http://www.regular-expressions.info/email.html
http://www.it-ebooks.info/

Chapter 4

[49]

 if (email_pattern.test(email) === false) {
 alert("Email is invalid");
 return false;
 }

 data.email = email;
 return true;
}

fns.push(process_email);

There is an HTML5 field type specifically designed for e-mails, but here
we are verifying manually, as this is a Regex book. For more information,
please refer to http://www.w3.org/TR/html-markup/input.
email.html.

Understanding the e-mail Regex
Let's go back to the regular expression used to match the name entered by the user:

/^[^\s@]+@[^\s@.]+\.[^\s@]+$/

Following is a brief explanation of the Regex:

•	 ^ asserts a position at the beginning of the string
•	 [^\s@]+ matches a single character that is not present in the following list:

°° The + quantifier between one and unlimited times
°° \s matches any white space character [\r\n\t\f]
°° @ matches the @ literal character

•	 [^\s@.]+ matches a single character that is not present in the following list:
°° The + quantifier between one and unlimited times
°° \s matches a [\r\n\t\f] whitespace character
°° @. is a single character in the @. list, literally
°° \. matches the . character literally

•	 [^\s@]+ match a single character that is not present in the following list:
°° The + quantifier between one and unlimited times
°° \s matches [\r\n\t\f] a whitespace character
°° @ is the @ literal character

•	 $ asserts its position at end of a string

www.it-ebooks.info

http://www.w3.org/TR/html-markup/input.email.html
http://www.w3.org/TR/html-markup/input.email.html
http://www.it-ebooks.info/

Regex in Practice

[50]

Matching a Twitter name
The next field we are going to add is a field for a Twitter username. For the
unfamiliar, a Twitter username is in the @username format, but when people enter
this in, they sometimes include the preceding @ symbol and on other occasions, they
only write the username by itself. Obviously, internally we would like everything
to be stored uniformly, so we will need to extract the username, regardless of the
@ symbol, and then manually prepend it with one, so regardless of whether it was
there or not, the end result will look the same.

So again, let's add a field for this:

Twitter: <input type="text" id="twitter_field" />

Now, let's write the function to handle it:

function process_twitter() {
 var field = document.getElementById("twitter_field");
 var username = field.value;

 var twitter_pattern = /^@?(\w+)$/;

 if (twitter_pattern.test(username) === false) {
 alert("Twitter username is invalid");
 return false;
 }

 var res = twitter_pattern.exec(username);
 data.twitter = "@" + res[1];
 return true;
}

fns.push(process_twitter);

If a user inputs the @ symbol, it will be ignored, as we will add it manually after
checking the username.

Understanding the twitter username Regex
Let's go back to the regular expression used to match the name entered by the user:

/^@?(\w+)$/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[51]

This is a brief explanation of the Regex:

•	 ^ asserts its position at start of the string
•	 @? matches the @ character, literally

°° The ? quantifier between zero and one time

•	 First capturing group (\w+)
°° \w+ matches a [a-zA-Z0-9_] word character
°° The + quantifier between one and unlimited times

•	 $ asserts its position at end of a string

Matching passwords
Another popular field, which can have some unique constraints, is a password field.
Now, not every password field is interesting; you may just allow just about anything
as a password, as long as the field isn't left blank. However, there are sites where
you need to have at least one letter from each case, a number, and at least one other
character. Considering all the ways these can be combined, creating a pattern that
can validate this could be quite complex. A much better solution for this, and one
that allows us to be a bit more verbose with our error messages, is to create four
separate patterns and make sure the password matches each of them.

For the input, it's almost identical:

Password: <input type="password" id="password_field" />

The process_password function is not very different from the previous example as
we can see its code as follows:

function process_password() {
 var field = document.getElementById("password_field");
 var password = field.value;

 var contains_lowercase = /[a-z]/;
 var contains_uppercase = /[A-Z]/;
 var contains_number = /[0-9]/;
 var contains_other = /[^a-zA-Z0-9]/;

 if (contains_lowercase.test(password) === false) {
 alert("Password must include a lowercase letter");
 return false;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Regex in Practice

[52]

 if (contains_uppercase.test(password) === false) {
 alert("Password must include an uppercase letter");
 return false;
 }

 if (contains_number.test(password) === false) {
 alert("Password must include a number");
 return false;
 }

 if (contains_other.test(password) === false) {
 alert("Password must include a non-alphanumeric character");
 return false;
 }

 data.password = password;
 return true;
}

fns.push(process_password);

All in all, you may say that this is a pretty basic validation and something we have
already covered, but I think it's a great example of working smart as opposed to
working hard. Sure, we probably could have created one long pattern that would
check everything together, but it would be less clear and less flexible. So, by breaking
it into smaller and more manageable validations, we were able to make clear patterns,
and at the same time, improve their usability with more helpful alert messages.

Matching URLs
Next, let's create a field for the user's website; the HTML for this field is:

Website: <input type="text" id="website_field" />

A URL can have many different protocols, but for this example, let's restrict it to only
http or https links. Next, we have the domain name with an optional subdomain,
and we need to end it with a suffix. The suffix itself can be a single word, such as
.com or it can have multiple segments, such as.co.uk.

All in all, our pattern looks similar to this:

/^(?:https?:\/\/)?\w+(?:\.\w+)?(?:\.[A-Z]{2,3})+$/i

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[53]

Here, we are using multiple noncapture groups, both for when sections are optional
and for when we want to repeat a segment. You may have also noticed that we are
using the case insensitive flag (/i) at the end of the regular expression, as links can
be written in lowercase or uppercase.

Now, we'll implement the actual function:

function process_website() {
 var field = document.getElementById("website_field");
 var website = field.value;

 var pattern = /^(?:https?:\/\/)?\w+(?:\.\w+)?(?:\.[A-Z]{2,3})+$/i

 if (pattern.test(website) === false) {
 alert("Website is invalid");
 return false;
 }

 data.website = website;
 return true;
}

fns.push(process_website);

At this point, you should be pretty familiar with the process of adding fields to our
form and adding a function to validate them. So, for our remaining examples let's
shift our focus a bit from validating inputs to manipulating data.

Understanding the URL Regex
Let's go back to the regular expression used to match the name entered by the user:

/^(?:https?:\/\/)?\w+(?:\.\w+)?(?:\.[A-Z]{2,3})+$/i

This is a brief explanation of the Regex:

•	 ^ asserts its position at start of a string
•	 (?:https?:\/\/)? is a non-capturing group

°° The ? quantifier between zero and one time
°° http matches the http characters literally (case-insensitive)

www.it-ebooks.info

http://www.it-ebooks.info/

Regex in Practice

[54]

•	 s? matches the s character literally (case-insensitive)
°° The ? quantifier between zero and one time
°° : matches the : character literally
°° \/ matches the / character literally
°° \/ matches the / character literally

•	 \w+ matches a [a-zA-Z0-9_] word character
°° The + quantifier between one and unlimited times

•	 (?:\.\w+)? is a non-capturing group
°° The ? quantifier between zero and one time
°° \. matches the . character literally

•	 \w+ matches a [a-zA-Z0-9_] word character
°° The + quantifier between one and unlimited times

•	 (?:\.[A-Z]{2,3})+ is a non-capturing group
°° The + quantifier between one and unlimited times
°° \. matches the . character literally

•	 [A-Z]{2,3} matches a single character present in this list
°° The {2,3} quantifier between2 and 3 times
°° A-Z is a single character in the range between A and Z

(case insensitive)

•	 $ asserts its position at end of a string
•	 i modifier: insensitive. Case insensitive letters, meaning it will match

a-z and A-Z.

Manipulating data
We are going to add one more input to our form, which will be for the user's
description. In the description, we will parse for things, such as e-mails, and then
create both a plain text and HTML version of the user's description.

The HTML for this form is pretty straightforward; we will be using a standard
textbox and give it an appropriate field:

Description:

<textarea id="description_field"></textarea>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[55]

Next, let's start with the bare scaffold needed to begin processing the form data:

function process_description() {
 var field = document.getElementById("description_field");
 var description = field.value;

 data.text_description = description;

 // More Processing Here

 data.html_description = "<p>" + description + "</p>";

 return true;
}

fns.push(process_description);

This code gets the text from the textbox on the page and then saves both a plain text
version and an HTML version of it. At this stage, the HTML version is simply the
plain text version wrapped between a pair of paragraph tags, but this is what we will
be working on now. The first thing I want to do is split between paragraphs, in a text
area the user may have different split-ups—lines and paragraphs. For our example,
let's say the user just entered a single new line character, then we will add a

tag and if there is more than one character, we will create a new paragraph using
the <p> tag.

Using the String.replace method
We are going to use JavaScript's replace method on the string object This function
can accept a Regex pattern as its first parameter, and a function as its second;
each time it finds the pattern it will call the function and anything returned by the
function will be inserted in place of the matched text.

So, for our example, we will be looking for new line characters, and in the function,
we will decide if we want to replace the new line with a break line tag or an actual
new paragraph, based on how many new line characters it was able to pick up:

var line_pattern = /\n+/g;
description = description.replace(line_pattern, function(match) {
 if (match == "\n") {
 return "
";
 } else {
 return "</p><p>";
 }
});

www.it-ebooks.info

http://www.it-ebooks.info/

Regex in Practice

[56]

The first thing you may notice is that we need to use the g flag in the pattern, so that
it will look for all possible matches as opposed to only the first. Besides this, the rest
is pretty straightforward. Consider this form:

If you take a look at the output from the console of the preceding code, you should
get something similar to this:

Matching a description field
The next thing we need to do is try and extract e-mails from the text and
automatically wrap them in a link tag. We have already covered a Regexp pattern
to capture e-mails, but we will need to modify it slightly, as our previous pattern
expects that an e-mail is the only thing present in the text. In this situation, we are
interested in all the e-mails included in a large body of text.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[57]

If you were simply looking for a word, you would be able to use the \b matcher,
which matches any boundary (that can be the end of a word/the end of a sentence),
so instead of the dollar sign, which we used before to denote the end of a string, we
would place the boundary character to denote the end of a word. However, in our
case it isn't quite good enough, as there are boundary characters that are valid e-mail
characters, for example, the period character is valid. To get around this, we can use
the boundary character in conjunction with a lookahead group and say we want it to
end with a word boundary, but only if it is followed by a space or end of a sentence/
string. This will ensure we aren't cutting off a subdomain or a part of a domain, if
there is some invalid information mid-way through the address.

Now, we aren't creating something that will try and parse e-mails no matter how they
are entered; the point of creating validators and patterns is to force the user to enter
something logical. That said, we assume that if the user wrote an e-mail address and
then a period, that he/she didn't enter an invalid address, rather, he/she entered an
address and then ended a sentence (the period is not part of the address).

In our code, we assume that to the end an address, the user is either going to have a
space after, such as some kind of punctuation, or that he/she is ending the string/
line. We no longer have to deal with lines because we converted them to HTML, but
we do have to worry that our pattern doesn't pick up an HTML tag in the process.

At the end of this, our pattern will look similar to this:

/\b[^\s<>@]+@[^\s<>@.]+\.[^\s<>@]+\b(?=.?(?:\s|<|$))/g

We start off with a word boundary, then, we look for the pattern we had before.
I added both the (>) greater-than and the (<) less-than characters to the group of
disallowed characters, so that it will not pick up any HTML tags. At the end of
the pattern, you can see that we want to end on a word boundary, but only if it is
followed by a space, an HTML tag, or the end of a string. The complete function,
which does all the matching, is as follows:

function process_description() {
 var field = document.getElementById("description_field");
 var description = field.value;

 data.text_description = description;

 var line_pattern = /\n+/g;
 description = description.replace(line_pattern, function(match) {
 if (match == "\n") {
 return "
";
 } else {
 return "</p><p>";

www.it-ebooks.info

http://www.it-ebooks.info/

Regex in Practice

[58]

 }
 });

 var email_pattern = /\b[^\s<>@]+@[^\s<>@.]+\.[^\s<>@]+\b(?=.?(?:\
s|<|$))/g;
 description = description.replace(email_pattern, function(match){
 return "" + match + "";
 });

 data.html_description = "<p>" + description + "</p>";

 return true;
}

We can continue to add fields, but I think the point has been understood. You have
a pattern that matches what you want, and with the extracted data, you are able to
extract and manipulate the data into any format you may need.

Understanding the description Regex
Let's go back to the regular expression used to match the name entered by the user:

/\b[^\s<>@]+@[^\s<>@.]+\.[^\s<>@]+\b(?=.?(?:\s|<|$))/g

This is a brief explanation of the Regex:

•	 \b asserts its position at a (^\w|\w$|\W\w|\w\W) word boundary
•	 [^\s<>@]+ matches a single character not present in the list:

°° The + quantifier between one and unlimited times
°° \s matches a [\r\n\t\f] whitespace character
°° <>@ is a single character in the <>@ list (case-sensitive)
°° @ matches the @ character literally

•	 [^\s<>@.]+ matches a single character not present in this list:
°° The + quantifier between one and unlimited times
°° \s matches any [\r\n\t\f] whitespace character
°° <>@. is a single character in the <>@. list literally (case sensitive)
°° \. matches the . character literally

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[59]

•	 [^\s<>@]+ matches a single character not present in this the list:
°° The + quantifier between one and unlimited times
°° \s matches a [\r\n\t\f] whitespace character
°° <>@ is a single character in the <>@ list literally (case sensitive)
°° \b asserts its position at a (^\w|\w$|\W\w|\w\W) word boundary

•	 (?=.?(?:\s|<|$)) Positive lookahead - Assert that the Regex below can
be matched

°° .? matches any character (except new line)
°° The ? quantifier between zero and one time
°° (?:\s|<|$) is a non-capturing group:

•	 First alternative: \s matches any white space character [\r\n\t\f]
•	 Second alternative: < matches the character < literally
•	 Third alternative: $ assert position at end of the string
•	 The g modifier: global match. Returns all matches of the regular expression,

not only the first one

Explaining a Markdown example
More examples of regular expressions can be seen with the popular Markdown
syntax (refer to http://en.wikipedia.org/wiki/Markdown). This is a situation
where a user is forced to write things in a custom format, although it's still a format,
which saves typing and is easier to understand. For example, to create a link in
Markdown, you would type something similar to this:

[Click Me](http://gabrielmanricks.com)

This would then be converted to:

Click Me

Disregarding any validation on the URL itself, this can easily be achieved using
this pattern:

/\[([^\]]*)\]\(([^(]*)\)/g

It looks a little complex, because both the square brackets and parenthesis are both
special characters that need to be escaped. Basically, what we are saying is that we
want an open square bracket, anything up to the closing square bracket, then we
want an open parenthesis, and again, anything until the closing parenthesis.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Markdown
http://www.it-ebooks.info/

Regex in Practice

[60]

A good website to write markdown documents is http://
dillinger.io/.

Since we wrapped each section into its own capture group, we can write this
function:

text.replace(/\[([^\]]*)\]\(([^(]*)\)/g, function(match, text, link){
 return "" + text + "";
});

We haven't been using capture groups in our manipulation examples, but if you
use them, then the first parameter to the callback is the entire match (similar to the
ones we have been working with) and then all the individual groups are passed as
subsequent parameters, in the order that they appear in the pattern.

Summary
In this chapter, we covered a couple of examples that showed us how to both
validate user inputs as well as manipulate them. We also took a look at some
common design patterns and saw how it's sometimes better to simplify the problem
instead of using brute force in one pattern for the purpose of creating validations.

In the next chapter, we will continue exploring some real-world problems by
developing an application with Node.js, which can be used to read a file and extract
its information, displaying it in a more user friendly manner.

www.it-ebooks.info

http://dillinger.io/
http://dillinger.io/
http://www.it-ebooks.info/

[61]

Node.js and Regex
So far, we've had fun learning how to create regular expressions for different
situations. However, you may be wondering what it would be like to apply a regular
expression in a real-world situation, such as reading a log file and presenting its
information in a user-friendlier format?

In this chapter, we will learn how to implement a simple Node.js application that
reads a log file and parses it using a regular expression. This way, we can retrieve
specific information from it and output it in a different format. We are going to test
all the knowledge we obtained from the previous chapters of this book.

In this chapter we will cover the following topics:

•	 Installing the required software to develop our example
•	 Reading a file with Node.js
•	 Analyzing the anatomy of an Apache log file
•	 Creating a parse with regular expressions to read an Apache log file

Setting up Node.js
Since we will be developing a Node.js application, the first step is to have Node.
js installed. We can get it from http://nodejs.org/download/. Just follow the
download instructions and we will have it set up on our computer.

If this is your first time working with Node.js, please go through
the tutorials at https://nodejs.org/.

www.it-ebooks.info

http://nodejs.org/download/
https://nodejs.org/
http://www.it-ebooks.info/

Node.js and Regex

[62]

To make sure we have Node.js installed, open the terminal application (Command
Prompt, if you're using Windows), and type node –v. The Node.js version installed
should be displayed as follows:

We are now good to go!

Getting started with our application
Let's start developing our sample application with Node.js, which will read a log
file and parse its information using a regular expression. We are going to create all
the required code inside a JavaScript file, which we will name as regex.js. Before
we start coding, we will perform a simple test. Add the following content inside the
regex.js:

console.log('Hello, World!');

Next, in the terminal application, execute the regex.js command node from the
directory that the file was created in. The Hello, World! message should be displayed
as follows:

The hello world application with Node.js is created and it works! We can now start
coding our application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[63]

Reading a file with Node.js
As the main goal of our application is to read a file, we need the file that the
application is going to read! We will be using a sample Apache log file. There are
many files on the Internet, but we will be using the log file that can be downloaded
from http://fossies.org/linux/source-highlight/tests/access.log. Place
the file in the same directory that the regex.js file was created.

This sample Apache log file is also available within the source code
bundle from this book.

To read a file with Node.js, we need to import the Node.js filesystem module.
Remove the console.log message we placed inside the regex.js file and add the
following line of code:

var fs = require('fs');

To learn more about the Node.js filesystem module, please read its
documentation at http://nodejs.org/api/fs.html.

The next step is to open the file and read its content. We are going to use the
following code to do this:

fs.readFile('access.log', function (err, data) {//#1

 if (err) throw err;//#2

 var text = data.toString();//#3

 var lines = text.split('\n');//#4

 lines.forEach(function(line) {//#5
 console.log(line);//#6
 });
});

According to the Node.js documentation, the readFile function (#1) can receive
three arguments: the name of the file (access.log), certain options (that we are not
using in this example), and the callback function that will be executed when the
contents of the file are loaded in the memory.

www.it-ebooks.info

http://fossies.org/linux/source-highlight/tests/access.log
http://nodejs.org/api/fs.html
http://www.it-ebooks.info/

Node.js and Regex

[64]

To learn more about the readLine function, please access
http://nodejs.org/api/fs.html#fs_fs_readfile_
filename_options_callback.

The callback function receives two arguments. The first one is the error. In case
something goes wrong, an exception will be thrown (#2). The second argument is
data, which contains the file contents. We are going to store a string with all the file
contents in a variable named text (#3).

Each record of the log is then placed in a row of the file. So, we can go ahead and
separate the file records and store it into an array (#4). We can now iterate the array
that holds the log rows (#5) and perform an action in each line. In this case, we are
simply outputting the content of each line in console (#6) for now. We will replace
line #6 of the code with a different logic in the next section.

If we execute the regex.js command node, all the file content should be displayed
as follows:

The anatomy of an Apache log file
Before we create the regular expression that will match a line of the Apache file, we
need to understand what kind of information it holds.

Let's take a look at a line from access.log:

127.0.0.1 - jan [30/Jun/2004:22:20:17 +0200] "GET /cgi-bin/trac.cgi/
login HTTP/1.1" 302 4370 "http://saturn.solar_system/cgi-bin/trac.
cgi" "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7) Gecko/20040620
Galeon/1.3.15"

www.it-ebooks.info

http://nodejs.org/api/fs.html#fs_fs_readfile_filename_options_callback
http://nodejs.org/api/fs.html#fs_fs_readfile_filename_options_callback
http://www.it-ebooks.info/

Chapter 5

[65]

The Apache access log that we are reading follows the %h %l %u %t \"%r\" %>s %b
\"%{Referer}i\" \"%{User-agent}i\" format. Let's take a look at each part:

•	 %h: The first part of the log is the (127.0.0.1) IP address
•	 %l: In the second part, the hyphen in the output indicates that the requested

piece of information is not available
•	 %u: The third part is the user ID of the person requesting the (jan) document.
•	 %t: The fourth part is the time taken for the request to be received,

such as ([30/Jun/2004:22:20:17 +0200]). It is in the [day/month/
year:hour:minute:second zone] format, where:

°° day = 2*digit
°° month = 3*letter
°° year = 4*digit
°° hour = 2*digit
°° minute = 2*digit
°° second = 2*digit
°° zone = (`+' | `-') 4*digit

•	 \"%r\": The fifth part is the request line from the client that is given in
double quotes, such as ("GET /cgi-bin/trac.cgi/login HTTP/1.1")

•	 %>s: The sixth part is the status code that the server sends back to the (302)
client

•	 %b: The seventh part is the size of the object returned to the (4370) client
•	 \"%{Referer}i\": The eighth part is the site that the client reports having

been referred from, which is given in double quotes, such as ("http://
saturn.solar_system/cgi-bin/trac.cgi")

•	 \"%{User-agent}i\": The ninth and last part is the user-agent HTTP request
header and is also given in double quotes, such as ("Mozilla/5.0 (X11; U;
Linux i686; en-US; rv:1.7) Gecko/20040620 Galeon/1.3.15")

All the parts are separated by a space. With this information and that given
previously, we can start creating our regular expression.

For more information about the format of Apache logs, please read
http://httpd.apache.org/docs/2.2/logs.html.

www.it-ebooks.info

http://httpd.apache.org/docs/2.2/logs.html
http://www.it-ebooks.info/

Node.js and Regex

[66]

Creating the Apache log Regex
In the Apache access log file, we have nine parts that we want to recognize and
extract from each line of the file. We can try two approaches while creating a
Regex: we can be very specific or more generic. As mentioned previously, the most
powerful regular expressions are the ones that are generic. We will try to achieve
these expressions in this chapter as well.

For example, for the first part of the log, we know it is an IP address. We can be
specific and use a Regex for the (^\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b) IPs
or, as we know, the log starts with an IP we can use, such as ^(\S+), where, ^ means
it matches the beginning of the input and \S matches a single character other than
whitespace. The ^(\S+) expression will match exactly the first part of the log, which
consists of some specific information until it finds a space (such as the IP address).
Also, ^(\S+) is simpler than using ^\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b
and we've still achieved the same result.

Let's go ahead and test the regular expression created so far:

To recapitulate what we learned in Chapter 1, Getting Started with Regex, the exec
method executes a search for a match in a string. It returns an array of information,
as it is the first position the string has matched and then the subsequent position in
each part of the Regex.

For the second and third parts, we can continue using the ^(\S+) Regex. The second
and third part can contain certain information (including a set of alphanumeric
characters), or it can contain a hyphen. We are interested in the information present
in each part until it finds a space. So, we can add two more ^(\S+) to our Regex: ^(\
S+) (\S+) (\S+) and test it:

The first three parts of the log line are recognized.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[67]

Creating a Regex for the time part
The fourth part is the time that is given between brackets. The Regex that is going
to match the time from the log is \[([^:]+):(\d+:\d+:\d+) ([^\]]+)\].

Let's see how we can achieve this result.

First, we have the opening and closing brackets. We cannot simply use [] as part
of the Regex, because brackets in a regular expression represent a set of characters
(groups as we learned in Chapter 3, Special Characters). So, we need to use the (\)
scape character before each bracket, so that we can represent the bracket as part
of the regular expression.

The next piece of the time Regex is "([^:]+):". After the opening bracket, we want
to match any character until we find the (:) colon. We learned in Chapter 2, The Basics
about a negated range and this is exactly what we are going to use. We are expecting
any character to be present except the colon, so we use [ˆ:] to represent it. Also, it
can consist of one or more characters, such as (+). Next, we are expecting a (:) colon.
With this piece of the regular expression, we can match "[30/Jun/2004:" from
"[30/Jun/2004:22:20:17 +0200]".

The same Regex can be represented as "(\d{2}\/\w{3}\/\d{4}):", since the day is
given in the form of two digits, the month is given in three characters, and the year in
four digits, and are separated by \.

The next piece of the Regex is (\d+:\d+:\d+). It will match 22:20:17 from the
example. The \d character matches any number (+ matches one or more), followed
by a (:) colon. We could also use (\d{2}:\d{2}:\d{2}), since the hours, minutes,
and seconds are represented by two digits each.

The final piece is ([^\]]+)\]. We are expecting any character except "]" ([^\]]
– negate]). This will match the time zone (+0200). We could also use ([\+|-]\
d{4}) as Regex, since the zone format is + or -, followed by four digits.

When we test the regular expression, we will get this:

www.it-ebooks.info

http://www.it-ebooks.info/

Node.js and Regex

[68]

Note that each piece of the time was split (the date, time, and zone)
by a subset, separated by a parenthesis group "()". If we want
to have the time as a single piece, we can remove the subsets: \
[(\d{2}\/\w{3}\/\d{4}:\d{2}:\d{2}:\d{2} [\+|-]\
d{4})\].

Creating a Regex for the request information
Following the parts that we separated (in a few sections previous to this one), let's
work on the fifth part of the log, which is the request information.

Let's take a look at the "GET /cgi-bin/trac.cgi/login HTTP/1.1" example,
so we can create a regular expression from it.

The request is given in double quotes, so that we know a regular expression is to
be created inside \" \". From the preceding example, there are three pieces (GET, /
cgi-bin/trac.cgi/login, and HTTP/1.1). So, GET can be represented by (\S+).

Next, we have /cgi-bin/trac.cgi/login. We will use (.*?), meaning, it can be
any character or nothing else. We will use this because we do not know the format
of this information.

Then, we have the HTTP/1.1 protocol and to match it, we will also use (\S+).

This will be the result when we try to match the regular expression:

If we want to retrieve each part of the request separately (such as the
method, resource, and protocol), we can use (), as we used in the first
approach, for the time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[69]

Creating a Regex for the status code and object
size
The next two parts of the log are simple. The first one is the status, which is
represented by 2xx, 3xx, 4xx, or 5xx, so, it is basically three digits. We can represent
it in two ways: (\S+), which will match any character until it finds a space, or
(\d{3}). Of course, we can be even more specific and allow the first digit to be only
2, 3, 4, or 5, though, let's not complicate it any more than is needed.

A number can also represent the object size. However, if no information is returned,
it will be represented by a hyphen, so (\S+) represents best. Or we can also use ([\
d|-]+).

The output will be the following:

Creating a Regex for the referrer and the user agent
Both parts are given in double quotes. We can represent the information using the
"([^"]*)" expression, which means including any character except ". We can apply
it in both parts.

With the addition of the last two parts of the log, we will get this output:

www.it-ebooks.info

http://www.it-ebooks.info/

Node.js and Regex

[70]

Our final Regex to match a line of the Apache access log, is given here:

^(\S+) (\S+) (\S+) \[(\d{2}\/\w{3}\/\d{4}:\d{2}:\d{2}:\d{2} [\+|-]\
d{4})\] \"(\S+ .*? \S+)\" (\d{3}) ([\d|-]+) "([^"]*)" "([^"]*)"

Trying to create a regular expression at once can be tricky and complicated.
However, we've split each part and created a Regex. At the end of all this, all we
have to do is combine all these parts together.

We are now ready to continue coding our application.

Parsing each Apache log row
We now know the regular expression that we want to use, so all we need to do is
add the (#1) Regex to the code, execute the Regex with each line (#2), and obtain the
results (#3). We will simply output the results in the console for now (#4). The code
is presented here:

var fs = require('fs');

fs.readFile('access.log', function (err, logData) {

 if (err) throw err;

 var text = logData.toString(),
 lines = text.split('\n'),
 results = {},
 regex = /^(\S+) (\S+) (\S+) \[(\d{2}\/\w{3}\/\d{4}:\d{2}:\
d{2}:\d{2} [\+|-]\d{4})\] \"(\S+ .*? \S+)\" (\d{3}) ([\d|-]+)
"([^"]*)" "([^"]*)"/; //#1

 lines.forEach(function(line) {

 results = regex.exec(line); //#2

 for (i=0; i<results.length; i++){ //#3
 console.log(results[i]); //#4
 }

 }); //#5
});

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[71]

Is this the only way of making Regex work with Node.js?
In this example, we used the JavaScript Regex, which we've learned
throughout this book. However, Node.js has other packages that can
make our lives easier when working with regular expressions. The
node-regexp package is one of the packages that provides a new way
of working with regular expressions while working with Node.js. It
is worth taking a look at it and spending some time playing with it at
https://www.npmjs.com/package/node-regexp.

We will continue completing our code in the next two sections.

Creating a JSON object for each row
Let's try to do something more useful with each row of the Apache log. We are going
to create a JavaScript Object Notation (JSON) object with each row and add it to an
array. To wrap our application, we will save the JSON content into a file.

To learn more about JSON, please refer to http://www.json.org/.

So after the Regex declaration (which is inside the var declaration), we are going
to add a new variable that will hold the collection of JSON objects we are going
to create:

jsonObject = [],
row;

Instead of lines #3 and #4, as seen in the code of the previous section, we will place
this code:

if (results){
 row = {
 ip: results[1],
 available: results[2],
 userid: results[3],
 time: results[4],
 request: results[5],
 status: results[6],
 size: results[7],
 referrer: results[8],
 userAgent: results[9],
 }

 jsonObject.push(row);
}

www.it-ebooks.info

https://www.npmjs.com/package/node-regexp
http://www.json.org/
http://www.it-ebooks.info/

Node.js and Regex

[72]

This code will verify if any result arises from the execution of the Regex, and will
create a JSON object called row. Then, we simply need to add the JSON object into
the jsonObject array.

Next, we will construct the last piece of the Node.js application. We will create a
JSON file with the JSON array that we created. We need to place the following code
in the #5 line of the code, as seen in the previous section:

var outputFilename = 'log.json';
fs.writeFile(outputFilename, JSON.stringify(jsonObject, null, 4),
 function(err) {
 if(err) {
 console.log(err);
 } else {
 console.log("JSON saved to " + outputFilename);
 }
});

To learn more about the writeFile function, please refer to
http://nodejs.org/api/fs.html#fs_fs_writefile_
filename_data_options_callback.

The result will be a JSON with content similar to the following:

[
 {
 "ip": "127.0.0.1",
 "available": "-",
 "userid": "jan",
 "time": "30/Jun/2004:22:20:17 +0200",
 "request": "GET /cgi-bin/trac.cgi/login HTTP/1.1",
 "status": "302",
 "size": "4370",
 "referrer": "http://saturn.solar_system/cgi-bin/trac.cgi",
 "userAgent": "Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.7)
 Gecko/20040620 Galeon/1.3.15"
 }
 //more content
]

www.it-ebooks.info

http://nodejs.org/api/fs.html#fs_fs_writefile_filename_data_options_callback
http://nodejs.org/api/fs.html#fs_fs_writefile_filename_data_options_callback
http://www.it-ebooks.info/

Chapter 5

[73]

Display the JSON in a table
The last step is to create a simple HTML page to display the Apache log content. We
are going to create an HTML file and place the following code in it:

<!DOCTYPE html>
<html lang="en">
 <head>
 <title>Log</title>
 <link rel="stylesheet" href="http://netdna.bootstrapcdn.com/
bootstrap/3.0.3/css/bootstrap.min.css">
 <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/
libs/bootstrap-table/1.5.0/bootstrap-table.min.css">
 <script src="http://cdnjs.cloudflare.com/ajax/libs/jquery/2.0.3/
jquery.min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/bootstrap-
table/1.5.0/bootstrap-table.min.js"></script>
 <style>
 body{
 margin-top: 30px;
 margin-right: 30px;
 margin-left: 30px;
 }
 </style>
 </head>

The preceding code contains the required JavaScript and CSS imports, so that we
can display the Apache log.

The table for this example was created using a Bootstrap table.
For more information on its usage and examples, please access
http://wenzhixin.net.cn/p/bootstrap-table/docs/
examples.html.

The next and last piece of code is the body of the HTML:

 <body>
 <table data-toggle="table" data-url="log.json"
 data-cache="false" data-height="400"
 data-show-refresh="true" data-show-toggle="true"
 data-show-columns="true" data-search="true"
 data-select-item-name="toolbar1" >
 <thead>

www.it-ebooks.info

http://wenzhixin.net.cn/p/bootstrap-table/docs/examples.html
http://wenzhixin.net.cn/p/bootstrap-table/docs/examples.html
http://www.it-ebooks.info/

Node.js and Regex

[74]

 <tr>
 <th data-field="ip">IP</th>
 <th data-field="time">Time</th>
 <th data-field="request">Request Info</th>
 <th data-field="status">Status</th>
 <th data-field="size">Size</th>
 <th data-field="referrer">Referrer</th>
 <th data-field="userAgent">User Agent</th>
 </tr>
 </thead>
 </table>
 </body>
</html>

The body will hold a table that will read the content of the log.json file, parse it,
and display it.

To be able to open the html file in the browser, we need a server. This is because
our code is using an Ajax request to load the JSON file created by the Node.js
application. Since we have Node.js installed, we can use its simplest server to
execute our code.

In the terminal, execute the following command to install the server:

npm install http-server –g

Then, change the directory to the one you created for the HTML file:

cd chapter05

Finally, start the server:

http-server

You will be able to see the results from the http://localhost:8080/ URL. We can
see the final result in the following image:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[75]

We can also toggle the results in the table and view the complete data:

Now we are done with our sample Node.js application, which has read and parsed
an Apache log file and can be displayed in a friendlier way.

www.it-ebooks.info

http://www.it-ebooks.info/

Node.js and Regex

[76]

Summary
In this chapter, we learned how to create a simple Node.js application that read an
Apache log file and extracted the log information using a regular expression. We
were able to put in to practice the knowledge we acquired in the previous chapters
of the book.

We also learned that to create a very complex Regex, it is best to do it in parts. We
learned that we can be very specific while creating a regular expression or we can
be more generic and achieve the same results.

As a new version of EcmaScript is being created (EcmaScript 6, which will add
lots of new features to JavaScript), it is good to familiarize yourself with the
improvements related to regular expressions as well. For more information please
visit http://www.ecmascript.org/dev.php.

We hope you enjoy the book! Have fun creating regular expressions!

www.it-ebooks.info

http://www.ecmascript.org/dev.php
http://www.it-ebooks.info/

[77]

JavaScript Regex
Cheat Sheet

In this appendix, you can find a summary of the patterns used in regular expressions
in JavaScript along with their descriptions, and a list of useful methods to test and
create regular expressions.

The following Regex topics will be covered in this appendix:

•	 Character classes and literals
•	 Character sets
•	 Boundaries and quantifiers
•	 Grouping, alternation, and back reference
•	 Useful methods

Character classes
In the following table, you can find the patterns for character classes, which tell the
Regex to match a single character:

Pattern Description Example

.
This matches any character, except newline or another
unicode line terminator, such as (\n, \r, \u2028 or
\u2029).

/f.o/ matches "fao",
"feo", and "foo"

\w This matches any alphanumeric character, including
the underscore. It is equivalent to [a-zA-Z0-9_].

/\w/ matches "f" in
"foo"

\W This matches any single nonword character. It is
equivalent to [^a-zA-Z0-9_].

/\W/ matches "%"in
"100%"

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Regex Cheat Sheet

[78]

Pattern Description Example

\d This matches any single digit. It is equivalent to [0-9]. /\d/ matches "1" in
"100"

\D This matches any non digit. It is equivalent to [^0-9]. /\D/ matches "R" in
"R2-D2"

\s This matches any single space character. It is
equivalent to [\t\r\n\v\f].

/\s/ matches " " in
"foo bar"

\S This matches any single nonspace character. It is
equivalent to [^ \t\r\n\v\f].

/\S/ matches "foo"
in "foo bar"

Literals
In the following table, you can find the patterns for literal characters, which tell the
Regex to match a special character:

Pattern Description Example
Alphanumeric These match themselves literally. /javascript book/

matches "javascript book"
in "javascript book"

\0 This matches a NUL character.
\n This matches a newline character.
\f This matches a form feed character.
\r This matches a carriage return

character.
\t This matches a tab character.
\v This matches a vertical tab character.
[\b] This matches a backspace character.
\xxx This matches the ASCII character,

expressed by the xxx octal number.
/112/ matches the "J"
character

\xdd This matches the ASCII character,
expressed by the dd hex number.

/x4A/ matches the "J"
character

\uxxxx This matches the ASCII character,
expressed by the xxxx UNICODE.

/u0237/ matches the "J"
character

\ This indicates whether the next
character is special and is not to be
interpreted literally.

/\^/ matches "^" in "char
^"

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[79]

Character sets
In the following table, you can find the patterns for character sets, which tell the
Regex to match only one character out of several characters.

Pattern Description Example
[xyz] This matches any one character enclosed in the character

set. You can use a hyphen to denote the range. For
example, /[a-z]/ matches any letter in the alphabet and
matches /[0-9]/ to any single digit.

/[ao]/
matches "a" in
"bar"

[^xyz] This matches any one character, which is not enclosed in
the character set.

/[^ao]/
matches "b" in
"bar"

Boundaries
In the following table, you can find the patterns for boundaries, which will tell the
Regex what position to do the matching in.

Pattern Description Example
^ This matches the beginning of an input.

If the multiline flag is set to true, it also
matches immediately after the (\n) line break
character.

/^ The/ matches "The" in
"The stars", but not "In The
stars".

$ This matches the end of an input. If the
multiline flag is set to true, it also matches
immediately before the (\n) line break
character.

/and$/ matches "and" in
"land", but not "and the bar".

\b This matches any word boundary (test
characters must exist at the beginning or at
the end of a word within the string).

/va\b/ matches "va" in "this
is a java script book", but not
"this is a javascript book".

\B This matches any non-word boundary. /va\B/ matches "va" in "this
is a JavaScript book", but not
"this is a JavaScript book".

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Regex Cheat Sheet

[80]

Grouping, alternation, and back reference
In the following table, you can find the patterns for grouping, alternation, and back
reference. The grouping is used to group a set of characters in a Regex. The alternation
is used to combine characters into a single regular expression, and the back reference
is used to match the same text as previously matched by a capturing group:

Pattern Description Example
(x) This groups characters together to

create a clause, that is, it matches x
and remembers the match. These are
called capturing parentheses.

/(foo)/ matches and remembers
"foo" in "foo bar".

() Parenthesis also serves to capture the
desired subpattern within a pattern.

/(\d\d)\/(\d\d)\/(\d\d\d\d)/
matches "12", "12", and "2000" in
"12/12/2000".

(?:x) This matches x but does not capture
it. In other words, no numbered
references are created for the items
within the parenthesis. These are
called non-capturing parentheses.

/(?:foo)/ matches, but does not
remember "foo" in "foo bar".

| Alternation combines clauses into
one regular expression, and then
matches any of the individual
clauses. x|y matches either x or y. It
is similar to the "OR" statement.

/morning|night/ matches
"morning" in "good morning" and
matches "night" in "good night".

()\n "\n" (where n is a number from 1-9)
when added to the end of a regular
expression pattern, allows you to
back reference a subpattern within
the pattern, so, the value of the
subpattern is remembered and used
as part of the matching.

/(no)\1/ matches "nono" in "nono".
"\1" is replaced with the value of the
first subpattern within the pattern, or
(no), to form the final pattern.

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[81]

Quantifiers
In the following table, you can find the patterns for quantifiers, which specify how
many instances of a character, group, or character class must be present in an input
for a match to be found.

Pattern Description Example
{n} This matches exactly n occurrences of a

regular expression.
/\d{5}/ matches "12345" (five
digits) in "1234567890".

{n,} This matches n or more occurrences of a
regular expression.

/\d{5,}/ matches "1234567890"
(minimum of five digits) in
"1234567890".

{n,m} This matches n to m number of
occurrences of a regular expression.

/\d{5,7}/ matches "1234567"
(minimum of five digits and a
maximum of seven digits) in
"1234567890".

* This matches zero or more occurrences
and is equivalent to {0,}.

/fo*/ matches "foo" in "foo"
and matches "foooooooo" in
"fooooooooled".

+ This matches one or more occurrences
and is equivalent to {1,}.

/o+/ matches "oo" in "foo".

? This matches zero or one occurrences
and is equivalent to {0,1}.

/fo?/ matches "fo" in "foo" and
matches "f" in "fairy".

+?

*?

"?" can also be used following one of
the *, +, ?, or {} quantifiers to make the
later match nongreedy, or the minimum
number of times versus the default
maximum.

/\d{2,4}?/ matches "12" in
the "12345" string, instead of
"1234" due to "?" at the end of the
quantifier nongreedy.

x(?=y) Positive lookahead: It matches x only
if it's followed by y. Note that y is not
included as part of the match, acting
only as a required condition.

/Java(?=Script|Hut)/
matches "Java" in "JavaScript" or
"JavaHut", but not "JavaLand".

x(?!y) Negative lookahead: It matches x only
if it's not followed by y. Note that y
is not included as part of the match,
acting only as a required condition.

/^\d+(?! years)/ matches "5"
in "5 days" or "5 books", but not "5
years".

www.it-ebooks.info

http://www.it-ebooks.info/

JavaScript Regex Cheat Sheet

[82]

JavaScript regular expressions methods
In the following table, you can find the methods used to match or test a regular
expression. The main JavaScript objects used in regular expressions are String and
RegExp, which represent a pattern (such as regular expression).

Method Description Example
String.match(regular
expression)

This executes a
search for a match
within a string,
based on a regular
expression.

var myString = "today is
12-12-2000";

var matches = myString.
match(/\d{4}/);

//returns array ["2000"]

RegExp.exec(string) This executes
a search for a
match in its string
parameter. Unlike
String.match,
the parameter
entered should be a
string, not a regular
expression pattern.

var pattern = /\d{4}/;

pattern.exec("today is
12-12-2000");

//returns array ["2000"]

String.replace(regular
expression,
replacement text)

This searches and
replaces the regular
expression portion
(match) with the
replaced text
instead.

var phone = "(201) 123-
4567";

var phoneFormatted =
phone.replace(/[\(\)-
\s]/g, "");

//returns 2011234567
(removed () - and blank
space)

String.split (string
literal or regular
expression)

This breaks up
a string into an
array of substrings,
based on a regular
expression or fixed
string.

var oldstring = "1,2, 3,
4, 5";

var newstring =
oldstring.split(/\
s*,\s*/);

//returns the array
["1","2","3","4","5"]

String.search(regular
expression)

This tests for a
match in a string. It
returns the index of
the match, or -1, if
it's not found.

var myString = "today is
12-12-2000";

myString.
search(/\d{4}/);

//returns 15 - index of
2000

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix

[83]

Method Description Example
RegExp.test(string) This tests whether

the given string
matches the
Regexp, and returns
true if it's matching,
and false, if not.

var pattern = /\d{4}/;

pattern.test("today is
12-12-2000");

//returns true

In this appendix, we very briefly covered the patterns learned throughout this book
in a format that is easy to consult on a day-to-day basis.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

[85]

Index
A
alternated options

matching 28, 29
alternation

patterns 80
AngularJS

URL 44
Apache log file

anatomy 64, 65
URL 63

Apache log Regex
about 66
Apache log row, parsing 70, 71
creating, for object size 69
creating, for referrer 69
creating, for request information 68
creating, for status code 69
creating, for time part 67
creating, for user agent 69
JSON object, creating for each row 71

Apache logs
URL 65

B
back reference

patterns 80
Boolean value 23
boundaries

patterns 79

C
capture groups

about 39
lookahead groups, matching 40
negative lookahead, using 41
noncapture groups 39

character classes
about 77, 78
literal characters 78

character sets
patterns 79

complete name Regex
about 47, 48
matching 46

custom quantifiers
defining 26
n or more occurrences, matching 27
n to m occurrences, matching 27

D
data, manipulating

about 54
description field, matching 56-58
Markdown, example 59
String.replace method, using 55

description Regex
about 58, 59
Markdown, example 59
matching 56-58

www.it-ebooks.info

http://www.it-ebooks.info/

[86]

E
EcmaScript

URL 76
e-mail Regex

about 49
matching 48, 49
URL 49

environment, building
about 9-11
application, testing 16, 17
errors, resetting 13
matches, extracting 14, 15
matches, resetting 13
RegExp, executing 14, 15
regular expression, creating 13, 14
submitted form, handling 11, 12

F
fields, validating

complete name, matching 46
complete name Regex 47, 48
e-mail, matching with Regex 48, 49
e-mail Regex 49
passwords, matching 51, 52
Twitter name, matching 50
twitter username Regex 50
URL Regex 53, 54
URLs, matching 52, 53

file
reading, with Node.js 63, 64

flags 5
form

setting up 44, 45
form validation 43

G
global (g flag) 5
greedy match 34
groups, Regex

about 36
capture groups 38, 39
characters, grouping to create clause 36, 37
noncapture groups 38, 39
patterns 80

J
JavaScript, Regex

about 4
RegExp constructor 5
regular expressions 7
regular expressions, methods 82, 83
rgx.exec method, using 6, 7
rgx.test method, using 6
String.match method, using 8, 9
String.replace method, using 7, 8
String.search method, using 8
string object 7

jQuery validation
URL 44

JSON
URL 71

JSON object, Apache log row
creating, for each row 71, 72
displaying, in table 73-75

L
lookahead groups

matching 40

M
Markdown

example, URL 59
multiline (m flag) 5
multipliers, Regex

about 24
defining 24
multiple occurrences, matching 24, 25
zero or more occurrences, matching 26
zero or one occurrence, matching 25

N
negated range 23
negative lookahead

using 41
Node.js

about 61
application 62
file, reading 63, 64
URL 61

www.it-ebooks.info

http://www.it-ebooks.info/

[87]

Node.js filesystem module
URL 63

noncapture groups
about 38, 39
matching 39, 40

nongreedy quantifiers
defining 34, 35

nonvisual constraints
about 31
input beginning, matching 32
input end, matching 32
nonword boundaries, matching 33
string boundaries 33
whitespace character, matching 34
word boundaries, matching 33

nonword boundaries
matching 33

P
Parsely.js

URL 44
passwords

matching 51, 52
pattern flags

using 5
patterns

about 1
phone number, analyzing 2
simple log file, analyzing 3
XML file, analyzing 3

Q
quantifiers

patterns 81

R
ranges, Regex

dash character, matching 23
defining 22
negated ranges, defining 23

readLine function
URL 64

Regex
about 1, 19, 43
creating, for telephone number 29
groups, matching 36
multipliers, defining 24
ranges, defining 22
vague matchers, defining 19

RegExp constructor 5
rgx.exec method

using 6, 7
rgx.test method

using 6
regular expressions. See Regex
RFC 5322

URL 48

S
simple log file

analyzing 3
string boundaries 33
String.replace method

using 7, 8, 55
String.search method

using 8, 9

T
twitter username Regex 50

U
URL Regex

about 53, 54
matching 52, 53

V
vague matchers, Regex

alphanumeric chars, matching 21
alphanumeric chars, negating 22
defining 19
digits, matching 20
digits, negating 22
wildcard character, matching 19, 20

www.it-ebooks.info

http://www.it-ebooks.info/

[88]

W
whitespace character

matching 34
wildcard character 20
word boundaries

matching 33
word character 21
writeFile function

URL 72

X
XML

about 38
file, analyzing 3

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
JavaScript Regular Expressions

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

www.packtpub.com
http://www.it-ebooks.info/

JavaScript and JSON Essentials
ISBN: 978-1-78328-603-4 Paperback: 120 pages

Successfully build advanced JSON-fueled web
applications with this practical, hands-on guide

1.	 Deploy JSON across various domains.

2.	 Facilitate metadata storage with JSON.

3.	 Build a practical data-driven web application
with JSON.

Object-Oriented JavaScript
Second Edition
ISBN: 978-1-84969-312-7 Paperback: 382 pages

Learn everything you need to know about OOJS in
this comprehensive guide

1.	 Think in JavaScript.

2.	 Make object-oriented programming accessible
and understandable to web developers.

3.	 Apply design patterns to solve JavaScript
coding problems.

4.	 Learn coding patterns that unleash the unique
power of the language.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Mastering JavaScript Design
Patterns
ISBN: 978-1-78398-798-6 Paperback: 290 pages

Discover how to use JavaScript design patterns
to create powerful applications with reliable and
maintainable code

1.	 Learn how to use tried and true software
design methodologies to enhance your
Javascript code.

2.	 Discover robust JavaScript implementations
of classic as well as advanced design patterns.

3.	 Packed with easy-to-follow examples that can
be used to create reusable code and extensible
designs.

JavaScript Unit Testing
ISBN: 978-178216-062-5 Paperback: 190 pages

Your comprehensive and practical guide to efficiently
performing and automating JavaScript unit testing

1.	 Learn and understand, using practical
examples, synchronous and asynchronous
JavaScript unit testing.

2.	 Cover the most popular JavaScript Unit Testing
Frameworks including Jasmine, YUITest,
QUnit, and JsTestDriver.

3.	 Automate and integrate your JavaScript Unit
Testing for ease and efficiency.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Regex
	It's all about patterns
	Analyzing a phone number
	Analyzing a simple log file
	Analyzing an XML file

	Regex in JavaScript
	The RegExp constructor
	Using pattern flags

	Using the rgx.test method
	Using the rgx.exec method
	The string object and regular expressions
	Using the String.replace method
	Using the String.search method
	Using the String.match method

	Building our environment
	Handling a submitted form
	Resetting matches and errors
	Creating a regular expression
	Executing RegExp and extracting its matches
	Testing our application

	Summary

	Chapter 2: The Basics
	Defining vague matchers in Regex
	Matching a wild card character
	Matching digits
	Matching alphanumeric chars
	Negating alphanumeric chars and digits

	Defining ranges in Regex
	Defining a range
	Matching the dash character
	Defining negated ranges

	Defining multipliers in Regex
	Matching one or more occurrences
	Matching zero or one occurrence
	Matching zero or more occurrences

	Defining custom quantifiers
	Matching n or more occurrences
	Matching n to m occurrences

	Matching alternated options
	Creating a Regex for a telephone number
	Summary

	Chapter 3: Special Characters
	Nonvisual constraints
	Matching the beginning and end of an input
	Matching word boundaries
	Matching nonword boundaries
	Matching a whitespace character

	Defining nongreedy quantifiers
	Matching groups in Regex
	Grouping characters together to create a clause
	Capture and noncapture groups

	Matching lookahead groups
	Using a negative lookahead

	Summary

	Chapter 4: Regex in Practice
	Regular expressions and form validation
	Setting up the form

	Validating fields
	Matching a complete name
	Understanding the complete name Regex

	Matching an e-mail with Regex
	Understanding the e-mail Regex

	Matching a Twitter name
	Understanding the twitter username Regex

	Matching passwords
	Matching URLs
	Understanding the URL Regex

	Manipulating data
	Using the String.replace method
	Matching a description field
	Understanding the description Regex
	Explaining a Markdown example

	Summary

	Chapter 5: Node.js and Regex
	Setting up Node.js
	Getting started with our application
	Reading a file with Node.js

	The anatomy of an Apache log file
	Creating the Apache log Regex
	Creating a Regex for the time part
	Creating a Regex for the request information
	Creating a Regex for the status code and object size
	Creating a Regex for the referrer and the user agent
	Parsing each Apache log row

	Summary

	Appendix: JavaScript Regex
Cheat Sheet
	Character classes
	Literals

	Character sets
	Boundaries
	Grouping, alternation, and back reference
	Quantifiers
	JavaScript regular expressions methods

	Index

